

EUROPEAN COMMITTEE FOR STANDARDIZATION
C O M I T É E U R O P É E N D E N O R M A LI S A T I O N
EUR OP ÄIS C HES KOM ITEE FÜR NOR M UNG

Management Centre: Avenue Marnix 17, B-1000 Brussels

© 2011 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 16374-15:2011 E

CEN

WORKSHOP

AGREEMENT

 CWA 16374-15

 December 2011

ICS 35.240.40

English version

 Extensions for Financial Services (XFS) interface specification
Release 3.20 - Part 15: Cash-In Module Device Class Interface

Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable for the
technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia,
Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland,
Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

CWA 16374-15:2011 (E)

2

Table of Contents

Foreword ... 5

1. Introduction .. 8
1.1 Background to Release 3.20 ... 8
1.2 XFS Service-Specific Programming ... 8

2. Cash-In Module .. 9

3. References ... 10

4. Legislative Note Handling Standards Support .. 11

5. Info Commands ... 12
5.1 WFS_INF_CIM_STATUS .. 12
5.2 WFS_INF_CIM_CAPABILITIES .. 18
5.3 WFS_INF_CIM_CASH_UNIT_INFO ... 24
5.4 WFS_INF_CIM_TELLER_INFO .. 33
5.5 WFS_INF_CIM_CURRENCY_EXP ... 35
5.6 WFS_INF_CIM_BANKNOTE_TYPES .. 36
5.7 WFS_INF_CIM_CASH_IN_STATUS .. 37
5.8 WFS_INF_CIM_GET_P6_INFO .. 38
5.9 WFS_INF_CIM_GET_P6_SIGNATURE.. 39
5.10 WFS_INF_CIM_GET_ITEM_INFO .. 41
5.11 WFS_INF_CIM_POSITION_CAPABILITIES .. 43
5.12 WFS_INF_CIM_REPLENISH_TARGET ... 45
5.13 WFS_INF_CIM_DEVICELOCK_STATUS... 46
5.14 WFS_INF_CIM_CASH_UNIT_CAPABILITIES ... 47

6. Execute Commands .. 49
6.1 WFS_CMD_CIM_CASH_IN_START .. 49
6.2 WFS_CMD_CIM_CASH_IN .. 51
6.3 WFS_CMD_CIM_CASH_IN_END ... 54
6.4 WFS_CMD_CIM_CASH_IN_ROLLBACK .. 56
6.5 WFS_CMD_CIM_RETRACT ... 58
6.6 WFS_CMD_CIM_OPEN_SHUTTER ... 61
6.7 WFS_CMD_CIM_CLOSE_SHUTTER ... 62
6.8 WFS_CMD_CIM_SET_TELLER_INFO... 63
6.9 WFS_CMD_CIM_SET_CASH_UNIT_INFO .. 64
6.10 WFS_CMD_CIM_START_EXCHANGE .. 66
6.11 WFS_CMD_CIM_END_EXCHANGE .. 69
6.12 WFS_CMD_CIM_OPEN_SAFE_DOOR.. 70
6.13 WFS_CMD_CIM_RESET .. 71

CWA 16374-15:2011 (E)

3

6.14 WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS .. 74
6.15 WFS_CMD_CIM_CONFIGURE_NOTETYPES ... 76
6.16 WFS_CMD_CIM_CREATE_P6_SIGNATURE .. 77
6.17 WFS_CMD_CIM_SET_GUIDANCE_LIGHT ... 80
6.18 WFS_CMD_CIM_CONFIGURE_NOTE_READER ... 82
6.19 WFS_CMD_CIM_COMPARE_P6_SIGNATURE .. 83
6.20 WFS_CMD_CIM_POWER_SAVE_CONTROL ... 85
6.21 WFS_CMD_CIM_REPLENISH .. 86
6.22 WFS_CMD_CIM_SET_CASH_IN_LIMIT .. 89
6.23 WFS_CMD_CIM_CASH_UNIT_COUNT ... 91
6.24 WFS_CMD_CIM_DEVICE_LOCK_CONTROL ... 93
6.25 WFS_CMD_CIM_SET_MODE .. 96
6.26 WFS_CMD_CIM_PRESENT_MEDIA .. 97

7. Events ... 99
7.1 WFS_SRVE_CIM_SAFEDOOROPEN .. 99
7.2 WFS_SRVE_CIM_SAFEDOORCLOSED ... 100
7.3 WFS_USRE_CIM_CASHUNITTHRESHOLD ... 101
7.4 WFS_SRVE_CIM_CASHUNITINFOCHANGED ... 102
7.5 WFS_SRVE_CIM_TELLERINFOCHANGED .. 103
7.6 WFS_EXEE_CIM_CASHUNITERROR ... 104
7.7 WFS_SRVE_CIM_ITEMSTAKEN ... 105
7.8 WFS_SRVE_CIM_COUNTS_CHANGED ... 106
7.9 WFS_EXEE_CIM_INPUTREFUSE ... 107
7.10 WFS_SRVE_CIM_ITEMSPRESENTED.. 108
7.11 WFS_SRVE_CIM_ITEMSINSERTED ... 109
7.12 WFS_EXEE_CIM_NOTEERROR .. 110
7.13 WFS_EXEE_CIM_SUBCASHIN ... 111
7.14 WFS_SRVE_CIM_MEDIADETECTED .. 112
7.15 WFS_EXEE_CIM_INPUT_P6 .. 113
7.16 WFS_EXEE_CIM_INFO_AVAILABLE.. 114
7.17 WFS_EXEE_CIM_INSERTITEMS ... 115
7.18 WFS_SRVE_CIM_DEVICEPOSITION .. 116
7.19 WFS_SRVE_CIM_POWER_SAVE_CHANGE ... 117
7.20 WFS_EXEE_CIM_INCOMPLETEREPLENISH .. 118

8. ATM Cash-In Transaction Flow - Application Guidelines 119
8.1 OK Transaction (Explicit Shutter Control) .. 120
8.2 Cancellation by Customer (Explicit Shutter Control) ... 121
8.3 Stacker Becomes Full (Explicit Shutter Control) .. 122
8.4 Bill Recognition Error (Explicit Shutter Control) .. 123
8.5 OK Transaction (Implicit Shutter Control) ... 124

CWA 16374-15:2011 (E)

4

8.6 Cancellation by Customer (Implicit Shutter Control) ... 125
8.7 Implicit Control of the Shutter - WFS_EXEE_CIM_SUBCASHIN event 126
8.8 OK Transaction - Note Handling Standard Supported ... 127
8.9 Multiple Refused Notes (Implicit Shutter Control) .. 128
8.10 Multiple Rollback Notes (Implicit Shutter Control) ... 130
8.11 Bill Recognition Error (WFS_CMD_CIM_PRESENT_MEDIA Command Supported) 131
8.12 Cancellation by Customer (Implicit Shutter Control and
WFS_CMD_CIM_PRESENT_MEDIA Command Supported) .. 132

9. ATM Mixed Media Transaction Flow – Application Guidelines.................... 133
9.1 Mixed Media OK Transaction .. 135
9.2 Mixed Media Cancellation by Customer .. 137
9.3 Mixed Media Cancellation by Customer on Cash Part Only .. 138
9.4 Mixed Media Multiple Refused Items ... 139

10. Rules for Cash Unit Exchange ... 140

11. C - Header file .. 142

CWA 16374-15:2011 (E)

5

Foreword

This CWA is revision 3.20 of the XFS interface specification.

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested
parties on 2011-06-29, the constitution of which was supported by CEN following the public call for participation
made on 1998-06-24. The specification is continuously reviewed and commented in the CEN/ISSS Workshop on
XFS. It is therefore expected that an update of the specification will be published in due time as a CWA,
superseding this revision 3.20.

A list of the individuals and organizations which supported the technical consensus represented by the CEN
Workshop Agreement is available to purchasers from the CEN-CENELEC Management Centre. These
organizations were drawn from the banking sector. The CEN/ISSS XFS Workshop gathered suppliers as well as
banks and other financial service companies.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference

Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface- Programmer's Reference

Parts 19 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP
standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class

Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class

Part 38: XFS MIB Device Specific Definitions - Camera Device Class

CWA 16374-15:2011 (E)

6

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Device Class

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Class

Part 44: XFS MIB Application Management

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class

Parts 48 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 3.10
(see CWA 15748) to Version 3.20 (this CWA) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.10 (CWA 15748) to Version 3.20
(this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.10 (see CWA 15748) to Version
3.20 (this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.10 (see CWA 15748) to Version 3.20
(this CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.10 (see CWA 15748) to Version 3.20 (this
CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.10 (see CWA 15748) to Version
3.20 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.10 (see CWA 15748) to Version 3.20 (this
CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.10 (see CWA 15748) to Version
3.20 (this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.10 (see CWA 15748) to
Version 3.20 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.10 (see CWA 15748) to
Version 3.20 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.10 (see CWA 15748) to Version 3.20 (this
CWA) - Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.10 (see CWA 15748) to Version 3.20 (this
CWA) - Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.10 (see CWA 15748) to Version
3.20 (this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.10 (see CWA 15748) to Version 3.20
(this CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.10 (see CWA 15748) to Version 3.20
(this CWA) - Programmer's Reference

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.10 (see CWA 15748) to Version 3.20
(this CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.10 (see CWA 15748) to
Version 3.20 (this CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a
complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the
CWA specifications, which are not requiring functional changes. The current version of the Release Notes is
available online from http://www.cen.eu/cen/pages/default.aspx.

CWA 16374-15:2011 (E)

7

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS
makes no warranty, express or implied, with respect to this document.

The formal process followed by the Workshop in the development of the CEN Workshop Agreement has been
endorsed by the National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC
Management Centre can be held accountable for the technical content of the CEN Workshop Agreement or possible
conflict with standards or legislation. This CEN Workshop Agreement can in no way be held as being an official
standard developed by CEN and its members.

The final review/endorsement round for this CWA was started on 2011-06-23 and was successfully closed on 2011-
07-23.The final text of this CWA was submitted to CEN for publication on 2011-08-26.

This CEN Workshop Agreement is publicly available as a reference document from the National Members of CEN:
Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany,
Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland,
Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

Comments or suggestions from the users of the CEN Workshop Agreement are welcome and should be addressed
to the CEN-CENELEC Management Centre.

Revision History:

3.00 October 18, 2000 Initial release.

3.02 May 09, 2003 For a description of changes from version 3.00 to version 3.02
see the CIM 3.02 Migration document.

3.10 November 29, 2007 For a description of changes from version 3.02 to version 3.10
see the CIM 3.10 Migration document.

3.20 March 2nd, 2011 For a description of changes from version 3.10 to version 3.20
see the CIM 3.20 Migration document.

CWA 16374-15:2011 (E)

8

1. Introduction

1.1 Background to Release 3.20

The CEN/ISSS XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor
software interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are
developed within the CEN/ISSS (European Committee for Standardization/Information Society Standardization
System) Workshop environment. CEN/ISSS Workshops aim to arrive at a European consensus on an issue that can
be published as a CEN Workshop Agreement (CWA).

The CEN/ISSS XFS Workshop encourages the participation of both banks and vendors in the deliberations required
to create an industry standard. The CEN/ISSS XFS Workshop achieves its goals by focused sub-groups working
electronically and meeting quarterly.

Release 3.20 of the XFS specification is based on a C API and is delivered with the continued promise for the
protection of technical investment for existing applications. This release of the specification extends the
functionality and capabilities of the existing devices covered by the specification, but does not include any new
device classes. Notable major enhancements include Mixed Media processing to allow mixed cash and check
accepting, as well as the addition of new commands to the CIM, PTR and IDC to allow better support of the
Japanese marketplace.

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,
messages, etc. These commands are used to request functions that are specific to one or more classes of Service
Providers, but not all of them, and therefore are not included in the common API for basic or administration
functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the
command is as similar as possible across all services, since a major objective of XFS is to standardize function
codes and structures for the broadest variety of services. For example, using the WFSExecute function, the
commands to read data from various services are as similar as possible to each other in their syntax and data
structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to
be provided by the developers of the services of that class; thus any particular device will normally support only a
subset of the defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is not considered to be
fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation.
An example would be a request from an application to turn on a control indicator on a passbook printer; the Service
Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the
Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor
implementation of that service does not support it, and the unsupported capability is considered to be fundamental
to the service. In this case, a WFS_ERR_UNSUPP_COMMAND error is returned to the calling application. An
example would be a request from an application to a cash dispenser to dispense coins; the Service Provider
recognizes the command but, since the cash dispenser it is managing dispenses only notes, returns this error.

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a
WFS_ERR_INVALID_COMMAND error is returned to the calling application.

This design allows implementation of applications that can be used with a range of services that provide differing
subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and
WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify
their behavior accordingly, or they may use functions and then deal with WFS_ERR_UNSUPP_COMMAND error
returns to make decisions as to how to use the service.

CWA 16374-15:2011 (E)

9

2. Cash-In Module

This specification describes the functionality of an XFS compliant Cash-In Module (CIM) Service Provider. It
defines the service-specific commands that can be issued to the Service Provider using the WFSGetInfo,
WFSAsyncGetInfo, WFSExecute and WFSAsyncExecute functions.

Persistent values are maintained through power failures, open sessions, close session and system resets.

This specification covers the acceptance of items. An “item” is defined as any media that can be accepted and
includes coupons, documents, bills and coins. However, if coins and bills are both to be accepted separate Service
Providers must be implemented for each.

All currency parameters in this specification are expressed as a quantity of minimum dispense units, as defined in
the description of the WFS_INF_CIM_CURRENCY_EXP command.

There are two types of CIM: Self-Service CIM and Teller CIM. A Self-Service CIM operates in an automated
environment, while a Teller CIM has an operator present. The functionality provided by the following commands is
only applicable to a Teller CIM:

WFS_CMD_CIM_SET_TELLER_INFO
WFS_INF_CIM_SET_TELLER_INFO

It is possible for the CIM to be part of a compound device with the Cash Dispenser Module (CDM). This
CIM\CDM combination is referred to throughout this specification as a “cash recycler”. For details of the CDM
interface see [Ref. 3].

If the device is a cash recycler then, if cash unit exchanges are required on both interfaces, the exchanges cannot be
performed concurrently. An exchange on one interface must be complete (the
WFS_CMD_CIM_END_EXCHANGE must have completed) before an exchange can start on the other interface.
The WFS_ERR_CIM_EXCHANGEACTIVE error code will be returned if the correct sequence is not adhered to.

The CIM interface can be used for all exchange operations on cash recycle devices, and this interface should be
used for cash units of multiple currencies and/or denominations (including multiple note identifiers associated with
the same denomination).

The event WFS_SRVE_CIM_COUNTS_CHANGED will be posted if an operation on the CDM interface affects
the recycle cash unit counts which are available through the CIM interface.

The following commands on the CDM interface may affect the CIM counts:

 WFS_CMD_CDM_DISPENSE
 WFS_CMD_CDM_PRESENT
 WFS_CMD_CDM_RETRACT
 WFS_CMD_CDM_COUNT
 WFS_CMD_CDM_REJECT
 WFS_CMD_CDM_SET_CASH_UNIT_INFO
 WFS_CMD_CDM_END_EXCHANGE
 WFS_CMD_CDM_CALIBRATE_CASH_UNIT
 WFS_CMD_CDM_RESET
 WFS_CMD_CDM_TEST_CASH_UNITS

CWA 16374-15:2011 (E)

10

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.20
2. ISO 4217 at http://www.iso.org
3. XFS Cash Dispenser Device Class Interface, Programmer’s Reference, Revision 3.20
4. Paragraph 6 of the EU council regulation 1338/2001. Terms of reference for the adaptation of paragraph 6 on
cash-in and cash-recycling machines (18.04.2002) at:
http://www.ecb.int/pub/pdf/other/recyclingeurobanknotes2005en.pdf
5. Extensions for Financial Services (XFS) interface specification, Release 3.20, Part 18: Item Processing Module
Device Class Interface Programmer's Reference.

http://www.ecb.int/pub/pdf/other/recyclingeurobanknotes2005en.pdf
http://www.iso.org/

CWA 16374-15:2011 (E)

11

4. Legislative Note Handling Standards Support

The XFS CIM specification is designed to support legislative note handling standards that may exist in various
countries and economic regions. XFS supports these note handling standards though the ability to attribute a level
number to each note. The XFS classification for each level, and how each level is handled is as follows:

1. Level 1 – Note not recognized. The note is returned to the user.

2. Level 2 – Recognized counterfeit note.

3. Level 3 – Suspected counterfeit note.

4. Level 4 – Recognized note that is identified as genuine.

If a note handling standard is to be supported then this classification of levels can be used to report items which
have been recognized/not recognized so that they can be processed accordingly. Where no standard is required to be
supported this classification can be ignored, in which case note levels do not have to be reported.

The above classification levels can be used to support standards that require note handling functionality which
includes:

1. The ability to remove counterfeit notes from circulation.

2. Reporting of unrecognized, suspected counterfeit and recognized counterfeit notes.

3. Creating and reporting of note signatures in order to allow back-tracing of notes.

CWA 16374-15:2011 (E)

12

5. Info Commands

5.1 WFS_INF_CIM_STATUS

Description This command is used to obtain the status of the CIM. It may also return vendor-specific status
information.

Input Param None.

Output Param LPWFSCIMSTATUS lpStatus;
typedef struct _wfs_cim_status
 {
 WORD fwDevice;
 WORD fwSafeDoor;
 WORD fwAcceptor;
 WORD fwIntermediateStacker;
 WORD fwStackerItems;
 WORD fwBanknoteReader;
 BOOL bDropBox;
 LPWFSCIMINPOS *lppPositions;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CIM_GUIDLIGHTS_SIZE];
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 WORD wMixedMode;
 WORD wAntiFraudModule;
 } WFSCIMSTATUS, *LPWFSCIMSTATUS;

fwDevice
Supplies the state of the CIM. However, an fwDevice status of WFS_CIM_DEVONLINE does
not necessarily imply that accepting can take place: the value of the fwAcceptor field must be
taken into account and - for some vendors - the state of the safe door (fwSafeDoor) may also be
relevant. The state of the CIM will have one of the following values:

Value Meaning
WFS_CIM_DEVONLINE The device is online. This is returned when

the acceptor is present and operational.
WFS_CIM_DEVOFFLINE The device is offline (e.g. the operator has

taken the device offline by turning a switch
or pulling out the device).

WFS_CIM_DEVPOWEROFF The device is powered off or physically not
connected.

WFS_CIM_DEVNODEVICE The device is not intended to be there, e.g.
this type of self service machine does not
contain such a device or it is internally not
configured.

WFS_CIM_DEVHWERROR The device is inoperable due to a hardware
error.

WFS_CIM_DEVUSERERROR The device is present but a person is
preventing proper device operation.

WFS_CIM_DEVBUSY The device is busy and unable to process an
execute command at this time.

WFS_CIM_DEVFRAUDATTEMPT The device is present but is inoperable
because it has detected a fraud attempt.

WFS_CIM_DEVPOTENTIALFRAUD The device has detected a potential fraud
attempt and is capable of remaining in
service. In this case the application should
make the decision as to whether to take the
device offline.

fwSafeDoor
Supplies the state of the safe door as one of the following values:

CWA 16374-15:2011 (E)

13

Value Meaning
WFS_CIM_DOORNOTSUPPORTED Physical device has no safe door or safe door

state reporting is not supported.
WFS_CIM_DOOROPEN Safe door is open.
WFS_CIM_DOORCLOSED Safe door is closed.
WFS_CIM_DOORUNKNOWN Due to a hardware error or other condition,

the state of the safe door cannot be
determined.

fwAcceptor
Supplies the state of the acceptor cash units as one of the following values:

Value Meaning
WFS_CIM_ACCOK All cash units present are in a good state.
WFS_CIM_ACCCUSTATE One or more of the cash units is in a high,

full, inoperative or manipulated condition.
Items can still be accepted into at least one
of the cash units.

WFS_CIM_ACCCUSTOP Due to a cash unit failure accepting is
impossible. No items can be accepted
because all of the cash units are in a full,
inoperative or manipulated condition.
This state may also occur when a retract cash
unit is full or no retract cash unit is present,
or when an application lock is set on every
cash unit.

WFS_CIM_ACCCUUNKNOWN Due to a hardware error or other condition,
the state of the cash units cannot be
determined.

fwIntermediateStacker
Supplies the state of the intermediate stacker as one of the following values:

Value Meaning
WFS_CIM_ISEMPTY The intermediate stacker is empty.
WFS_CIM_ISNOTEMPTY The intermediate stacker is not empty.
WFS_CIM_ISFULL The intermediate stacker is full.
WFS_CIM_ISUNKNOWN Due to a hardware error or other condition,

the state of the intermediate stacker cannot
be determined.

WFS_CIM_ISNOTSUPPORTED The physical device has no intermediate
stacker.

fwStackerItems
This field informs the application whether items on the intermediate stacker have been in
customer access. Possible values are:

Value Meaning
WFS_CIM_CUSTOMERACCESS Items on the intermediate stacker have been

in customer access. If the device is a cash
recycler then the items on the intermediate
stacker may be there as a result of a previous
cash-out operation.

WFS_CIM_NOCUSTOMERACCESS Items on the intermediate stacker have not
been in customer access.

WFS_CIM_ACCESSUNKNOWN It is not known if the items on the
intermediate stacker have been in customer
access.

WFS_CIM_NOITEMS There are no items on the intermediate
stacker or the physical device has no
intermediate stacker.

fwBanknoteReader
Supplies the state of the banknote reader as one of the following values:

CWA 16374-15:2011 (E)

14

Value Meaning
WFS_CIM_BNROK The banknote reader is in a good state.
WFS_CIM_BNRINOP The banknote reader is inoperable.
WFS_CIM_BNRUNKNOWN Due to a hardware error or other condition,

the state of the banknote reader cannot be
determined.

WFS_CIM_BNRNOTSUPPORTED The physical device has no banknote reader.

bDropBox
The drop box is an area within the CIM where items which have caused a problem during an
operation are stored. This field specifies the status of the drop box. TRUE means that some items
are stored in the drop box due to a cash-in transaction which caused a problem. FALSE indicates
that the drop box is empty.

lppPositions
Pointer to a NULL-terminated array of pointers to WFSCIMINPOS structures (one for each
supported input or output position):

typedef struct _wfs_cim_inpos
 {
 WORD fwPosition;
 WORD fwShutter;
 WORD fwPositionStatus;
 WORD fwTransport;
 WORD fwTransportStatus;
 } WFSCIMINPOS, *LPWFSCIMINPOS;

fwPosition
Specifies the input or output position as one of the following values:

Value Meaning
WFS_CIM_POSINLEFT Left input position.
WFS_CIM_POSINRIGHT Right input position.
WFS_CIM_POSINCENTER Center input position.
WFS_CIM_POSINTOP Top input position.
WFS_CIM_POSINBOTTOM Bottom input position.
WFS_CIM_POSINFRONT Front input position.
WFS_CIM_POSINREAR Rear input position.
WFS_CIM_POSOUTLEFT Left output position.
WFS_CIM_POSOUTRIGHT Right output position.
WFS_CIM_POSOUTCENTER Center output position.
WFS_CIM_POSOUTTOP Top output position.
WFS_CIM_POSOUTBOTTOM Bottom output position.
WFS_CIM_POSOUTFRONT Front output position.
WFS_CIM_POSOUTREAR Rear output position.

fwShutter
Specifies the state of the shutter as one of the following values:

Value Meaning
WFS_CIM_SHTCLOSED The shutter is closed.
WFS_CIM_SHTOPEN The shutter is opened.
WFS_CIM_SHTJAMMED The shutter is jammed.
WFS_CIM_SHTUNKNOWN Due to a hardware error or other

condition, the state of the shutter cannot
be determined.

WFS_CIM_SHTNOTSUPPORTED The physical device has no shutter or
shutter state reporting is not supported.

fwPositionStatus
The status of the input or output position. This field specifies the state of the position as one of
the following values:

Value Meaning
WFS_CIM_PSEMPTY The position is empty.
WFS_CIM_PSNOTEMPTY The position is not empty.

CWA 16374-15:2011 (E)

15

WFS_CIM_PSUNKNOWN Due to a hardware error or other
condition, the state of the position cannot
be determined.

WFS_CIM_PSNOTSUPPORTED The device is not capable of reporting
whether or not items are at the position.

WFS_CIM_PSFOREIGNITEMS Foreign items have been detected in the
position.

fwTransport
Specifies the state of the transport mechanism as one of the following values:

Value Meaning
WFS_CIM_TPOK The transport is in a good state.
WFS_CIM_TPINOP The transport is inoperative due to a

hardware failure or media jam.
WFS_CIM_TPUNKNOWN Due to a hardware error or other

condition, the state of the transport
cannot be determined.

WFS_CIM_TPNOTSUPPORTED The physical device has no transport or
transport state reporting is not supported.

fwTransportStatus
Returns information regarding items which may be on the transport. If the device is a cash
recycler it is possible that items will be on the transport due to a previous dispense operation,
in which case the status will be WFS_CIM_TPSTATNOTEMPTY. The possible values of this
field are:

Value Meaning
WFS_CIM_TPSTATEMPTY The transport is empty.
WFS_CIM_TPSTATNOTEMPTY The transport is not empty, the items

have not been in customer access.
WFS_CIM_TPSTATNOTEMPTYCUST Items which a customer has had access to

are on the transport.
WFS_CIM_TPSTATNOTEMPTY_UNK Due to a hardware error or other

condition it is not known whether there
are items on the transport.

WFS_CIM_TPSTATNOTSUPPORTED The device is not capable of reporting
whether or not items are on the transport.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

dwGuidLights [...]
Specifies the state of the guidance light indicators. The elements of this array can be accessed by
using the predefined index values specified for the dwGuidLights [] field in the capabilities.
Vendor specific guidance lights are defined starting from the end of the array. The maximum
guidance light index is WFS_CIM_GUIDLIGHTS_MAX.

Specifies the state of the guidance light indicator as
WFS_CIM_GUIDANCE_NOT_AVAILABLE, WFS_CIM_GUIDANCE_OFF or a combination
of the following flags consisting of one type B, and optionally one type C.

Value Meaning Type
WFS_CIM_GUIDANCE_NOT_AVAILABLE The status is not available. A
WFS_CIM_GUIDANCE_OFF The light is turned off. A
WFS_CIM_GUIDANCE_SLOW_FLASH The light is blinking slowly. B
WFS_CIM_GUIDANCE_MEDIUM_FLASH The light is blinking medium B

frequency.
WFS_CIM_GUIDANCE_QUICK_FLASH The light is blinking quickly. B
WFS_CIM_GUIDANCE_CONTINUOUS The light is turned on B

continuous (steady).
WFS_CIM_GUIDANCE_RED The light is red. C

CWA 16374-15:2011 (E)

16

WFS_CIM_GUIDANCE_GREEN The light is green. C
WFS_CIM_GUIDANCE_YELLOW The light is yellow. C
WFS_CIM_GUIDANCE_BLUE The light is blue. C
WFS_CIM_GUIDANCE_CYAN The light is cyan. C
WFS_CIM_GUIDANCE_MAGENTA The light is magenta. C
WFS_CIM_GUIDANCE_WHITE The light is white. C

wDevicePosition
Specifies the device position. The device position value is independent of the fwDevice value, e.g.
when the device position is reported as WFS_CIM_DEVICENOTINPOSITION, fwDevice can
have any of the values defined above (including WFS_CIM_DEVONLINE or
WFS_CIM_DEVOFFLINE). If the device is not in its normal operating position (i.e.
WFS_CIM_DEVICEINPOSITION) then media may not be accepted / presented through the
normal customer interface. This value is one of the following values:

Value Meaning
WFS_CIM_DEVICEINPOSITION The device is in its normal operating

position, or is fixed in place and cannot be
moved.

WFS_CIM_DEVICENOTINPOSITION The device has been removed from its
normal operating position.

WFS_CIM_DEVICEPOSUNKNOWN Due to a hardware error or other condition,
the position of the device cannot be
determined.

WFS_CIM_DEVICEPOSNOTSUPP The physical device does not have the
capability of detecting the position.

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state from the current power saving mode. This value is zero if either the power saving mode has
not been activated or no power save control is supported.

wMixedMode
Reports if Mixed Media mode is active. See section WFS_CMD_CIM_SET_MODE for a
description of the modes. This flag can also be set/reset by the command
WFS_CMD_IPM_SET_MODE on the IPM interface. This value is one of the following values:

Value Meaning
WFS_CIM_MIXEDMEDIANOTACTIVE Mixed Media transactions are not supported

by the device or Mixed Media mode is not
activated.

WFS_CIM_IPMMIXEDMEDIA Mixed Media mode using the CIM and IPM
interfaces is activated.

wAntiFraudModule
Specifies the state of the anti-fraud module as one of the following values:

Value Meaning
WFS_CIM_AFMNOTSUPP No anti-fraud module is available.
WFS_CIM_AFMOK Anti-fraud module is in a good state and no

foreign device is detected.
WFS_CIM_AFMINOP Anti-fraud module is inoperable.
WFS_CIM_AFMDEVICEDETECTED Anti-fraud module detected the presence of a

foreign device.
WFS_CIM_AFMUNKNOWN The state of the anti-fraud module cannot be

determined.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which rely on the lpszExtra field may not be device or vendor-independent.

In the case where communications with the device has been lost, the fwDevice field will report
WFS_CIM_DEVPOWEROFF when the device has been removed or
WFS_CIM_DEVHWERROR if the communications are unexpectedly lost. All other fields
should contain a value based on the following rules and priority:

1. Report the value as unknown.

CWA 16374-15:2011 (E)

17

2. Report the value as a general h/w error.

3. Report the value as the last known value.

CWA 16374-15:2011 (E)

18

5.2 WFS_INF_CIM_CAPABILITIES

Description This command is used to retrieve the capabilities of the cash acceptor.

Input Param None.

Output Param LPWFSCIMCAPS lpCaps;
typedef struct _wfs_cim_caps
 {
 WORD wClass;
 WORD fwType;
 WORD wMaxCashInItems;
 BOOL bCompound;
 BOOL bShutter;
 BOOL bShutterControl;
 BOOL bSafeDoor;
 BOOL bCashBox;
 BOOL bRefill;
 WORD fwIntermediateStacker;
 BOOL bItemsTakenSensor;
 BOOL bItemsInsertedSensor;
 WORD fwPositions;
 WORD fwExchangeType;
 WORD fwRetractAreas;
 WORD fwRetractTransportActions;
 WORD fwRetractStackerActions;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CIM_GUIDLIGHTS_SIZE];
 DWORD dwItemInfoTypes;
 BOOL bCompareSignatures;
 BOOL bPowerSaveControl;
 BOOL bReplenish;
 WORD fwCashInLimit;
 WORD fwCountActions;
 BOOL bDeviceLockControl;
 WORD wMixedMode;
 BOOL bMixedDepositAndRollback;
 BOOL bAntiFraudModule;
 } WFSCIMCAPS, *LPWFSCIMCAPS;

wClass
Specifies the logical service class as WFS_SERVICE_CLASS_CIM.

fwType
Supplies the type of CIM as one of the following values:

Value Meaning
WFS_CIM_TELLERBILL The CIM is a Teller Bill Acceptor.
WFS_CIM_SELFSERVICEBILL The CIM is a Self-Service Bill Acceptor.
WFS_CIM_TELLERCOIN The CIM is a Teller Coin Acceptor.
WFS_CIM_SELFSERVICECOIN The CIM is a Self-Service Coin Acceptor.

wMaxCashInItems
Supplies the maximum number of items that can be accepted in a single
WFS_CMD_CIM_CASH_IN command. This value reflects the hardware limitations of the device
and therefore it does not change as part of the WFS_CMD_CIM_CASH_IN_LIMIT command.

bCompound
Specifies whether or not the logical device is part of a compound physical device.

CWA 16374-15:2011 (E)

19

bShutter
If this flag is TRUE then the device has a shutter and explicit shutter control through the
commands WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER is
supported. The definition of a shutter will depend on the h/w implementation. On some devices
where items are automatically detected and accepted then a shutter is simply a latch that is opened
and closed, usually under implicit control by the Service Provider. On other devices, the term
shutter refers to a door, which is opened and closed to allow the customer to place the items onto
a tray. If a Service Provider cannot detect when items are inserted and there is a shutter on the
device, then it must provide explicit application control of the shutter.

bShutterControl
If set to TRUE the shutter is controlled implicitly by the Service Provider. If set to FALSE the
shutter must be controlled explicitly by the application using the
WFS_CMD_CIM_OPEN_SHUTTER and the WFS_CMD_CIM_CLOSE_SHUTTER
commands. In either case the WFS_CMD_CIM_PRESENT_MEDIA command may be used if
the bPresentControl field is reported as FALSE. The bShutterControl field is always set to TRUE
if the device has no shutter. This field applies to all shutters and all positions.

bSafeDoor
Specifies whether the WFS_CMD_CIM_OPEN_SAFE_DOOR command is supported.

bCashBox
This field is only applicable to CIM types WFS_CIM_TELLERBILL and
WFS_CIM_TELLERCOIN. It specifies whether or not the tellers have been assigned a cash box.

bRefill
This field is not used.

fwIntermediateStacker
Specifies the number of items the intermediate stacker for cash-in can hold. Zero means that there
is no intermediate stacker for cash-in available.

bItemsTakenSensor
Specifies whether or not the CIM can detect when items at the exit position are taken by the user.
If set to TRUE the Service Provider generates an accompanying
WFS_SRVE_CIM_ITEMSTAKEN event. If set to FALSE this event is not generated. This field
relates to all output positions.

bItemsInsertedSensor
Specifies whether the CIM has the ability to detect when items have actually been inserted by the
user. If set to TRUE the Service Provider generates an accompanying
WFS_SRVE_CIM_ITEMSINSERTED event. If set to FALSE this event is not generated. This
field relates to all input positions. This flag should not be reported as TRUE unless item insertion
can be detected.

fwPositions
Specifies the CIM input and output positions which are available as a combination of the
following flags:

Value Meaning
WFS_CIM_POSINLEFT Left input position.
WFS_CIM_POSINRIGHT Right input position.
WFS_CIM_POSINCENTER Center input position.
WFS_CIM_POSINTOP Top input position.
WFS_CIM_POSINBOTTOM Bottom input position.
WFS_CIM_POSINFRONT Front input position.
WFS_CIM_POSINREAR Rear input position.
WFS_CIM_POSOUTLEFT Left output position.
WFS_CIM_POSOUTRIGHT Right output position.
WFS_CIM_POSOUTCENTER Center output position.
WFS_CIM_POSOUTTOP Top output position.
WFS_CIM_POSOUTBOTTOM Bottom output position.
WFS_CIM_POSOUTFRONT Front output position.
WFS_CIM_POSOUTREAR Rear output position.

CWA 16374-15:2011 (E)

20

fwExchangeType
Specifies the type of cash unit exchange operations supported by the CIM. Values are a
combination of the following flags:

Value Meaning
WFS_CIM_EXBYHAND The CIM supports manual replenishment

either by emptying the cash unit by hand or
by replacing the cash unit.

WFS_CIM_EXTOCASSETTES The CIM supports moving items from the
replenishment cash unit to the bill cash units.

WFS_CIM_CLEARRECYCLER The CIM supports the emptying of recycle
cash units.

WFS_CIM_DEPOSITINTO The CIM supports moving items from the
deposit entrance to the bill cash units.

fwRetractAreas
Specifies the areas to which items may be retracted. If the device does not have a retract
capability this field will be WFS_CIM_RA_NOTSUPP. Otherwise this field will be set to a
combination of the following flags:

Value Meaning
WFS_CIM_RA_RETRACT Items may be retracted to a retract cash unit.
WFS_CIM_RA_REJECT Items may be retracted to a reject cash unit.
WFS_CIM_RA_TRANSPORT Items may be retracted to the transport.
WFS_CIM_RA_STACKER Items may be retracted to the intermediate

stacker.
WFS_CIM_RA_BILLCASSETTES Items may be retracted to item cassettes,

i.e. cash-in and recycle cash units.

fwRetractTransportActions
Specifies the actions which may be performed on items which have been retracted to the
transport. If the device does not have the capability to retract items to or from the transport this
field will be WFS_CIM_NOTSUPP. Otherwise this field will be set to a combination of the
following flags:

Value Meaning
WFS_CIM_PRESENT The items may be moved to the exit position.
WFS_CIM_RETRACT The items may be retracted to a retract cash

unit.
WFS_CIM_REJECT The items may be retracted to a reject cash

unit.
WFS_CIM_BILLCASSETTES The items may be retracted to item cassettes,

i.e. cash-in and recycle cash units.

fwRetractStackerActions
Specifies the actions which may be performed on items which have been retracted to the stacker.
If the device does not have the capability to retract items to or from the stacker this field will be
WFS_CIM_NOTSUPP. Otherwise this field will be set to a combination of the following flags:

Value Meaning
WFS_CIM_PRESENT The items may be moved to the exit position.
WFS_CIM_RETRACT The items may be retracted to a retract cash

unit.
WFS_CIM_REJECT The items may be retracted to a reject cash

unit.
WFS_CIM_BILLCASSETTES The items may be retracted to item cassettes,

i.e. cash-in and recycle cash units.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

CWA 16374-15:2011 (E)

21

The parameter that reports if a legislative note handling standard is supported is reported in
lpszExtra as follows:

P6=1 A note handling standard is supported and
only level 2 notes will not be returned to the
customer in a cash-in transaction.

P6=2 A note handling standard is supported and
level 2 and level 3 notes will not be returned
to the customer in a cash-in transaction.

dwGuidLights [...]
Specifies which guidance light positions are available. A number of guidance light positions are
defined below. Vendor specific guidance lights are defined starting from the end of the array. The
maximum guidance light index is WFS_CIM_GUIDLIGHTS_MAX.

The elements of this array are specified as a combination of the following flags and indicate all of
the possible flash rates (type B) and colors (type C) that the guidance light indicator is capable of
handling. If the guidance light indicator only supports one color then no value of type C is
returned. A value of WFS_CIM_GUIDANCE_NOT_AVAILABLE indicates that the device has
no guidance light indicator or the device controls the light directly with no application control
possible.

Value Meaning Type
WFS_CIM_GUIDANCE_NOT_AVAILABLE There is no guidance light control A

available at this position.
WFS_CIM_GUIDANCE_OFF The light can be off. B
WFS_CIM_GUIDANCE_SLOW_FLASH The light can blink slowly. B
WFS_CIM_GUIDANCE_MEDIUM_FLASH The light can blink medium B

frequency.
WFS_CIM_GUIDANCE_QUICK_FLASH The light can blink quickly. B
WFS_CIM_GUIDANCE_CONTINUOUS The light can be continuous B

(steady).
WFS_CIM_GUIDANCE_RED The light can be red. C
WFS_CIM_GUIDANCE_GREEN The light can be green. C
WFS_CIM_GUIDANCE_YELLOW The light can be yellow. C
WFS_CIM_GUIDANCE_BLUE The light can be blue. C
WFS_CIM_GUIDANCE_CYAN The light can be cyan. C
WFS_CIM_GUIDANCE_MAGENTA The light can be magenta. C
WFS_CIM_GUIDANCE_WHITE The light can be white. C

Each array index represents an input/output position in the CIM. The elements are accessed using
the following definitions for the index value:

Value Meaning
WFS_CIM_GUIDANCE_POSINNULL The default input position.
WFS_CIM_GUIDANCE_POSINLEFT Left input position.
WFS_CIM_GUIDANCE_POSINRIGHT Right input position.
WFS_CIM_GUIDANCE_POSINCENTER Center input position.
WFS_CIM_GUIDANCE_POSINTOP Top input position.
WFS_CIM_GUIDANCE_POSINBOTTOM Bottom input position.
WFS_CIM_GUIDANCE_POSINFRONT Front input position.
WFS_CIM_GUIDANCE_POSINREAR Rear input position.
WFS_CIM_GUIDANCE_POSOUTLEFT Left output position.
WFS_CIM_GUIDANCE_POSOUTRIGHT Right output position.
WFS_CIM_GUIDANCE_POSOUTCENTER Center output position.
WFS_CIM_GUIDANCE_POSOUTTOP Top output position.
WFS_CIM_GUIDANCE_POSOUTBOTTOM Bottom output position.
WFS_CIM_GUIDANCE_POSOUTFRONT Front output position.
WFS_CIM_GUIDANCE_POSOUTREAR Rear output position.
WFS_CIM_GUIDANCE_POSOUTNULL The default output position.

dwItemInfoTypes
Specifies the types of information that can be retrieved through the
WFS_INF_CIM_GET_ITEM_INFO command as a combination of the following flags:

CWA 16374-15:2011 (E)

22

Value Meaning
WFS_CIM_ITEM_SERIALNUMBER Serial Number of the item.
WFS_CIM_ITEM_SIGNATURE Signature of the item.

bCompareSignatures
Specifies if the Service Provider has the ability to compare signatures through command
WFS_CMD_CIM_COMPARE_P6_SIGNATURE. If this field is set to FALSE, the
WFS_CMD_CIM_COMPARE_P6_SIGNATURE command returns
WFS_ERR_UNSUPP_COMMAND.

bPowerSaveControl
Specifies whether power saving control is available. This can either be TRUE if available or
FALSE if not available.

bReplenish
If set to TRUE the WFS_INF_CIM_REPLENISH_TARGET and
WFS_CMD_CIM_REPLENISH commands are supported. If set to FALSE the
WFS_INF_CIM_REPLENISH_TARGET command returns WFS_ERR_UNSUPP_CATEGORY
and the WFS_CMD_CIM_REPLENISH command returns WFS_ERR_UNSUPP_COMMAND.

fwCashInLimit
Specifies whether the cash-in limitation is supported or not for the
WFS_CMD_CIM_SET_CASH_IN_LIMIT command. If the device does not have the capability
to limit the amount or the number of items during cash-in operations then this field will be
WFS_CIM_LIMITNOTSUPP. Otherwise this field will be set to a combination of the following
values:

Value Meaning
WFS_CIM_LIMITBYTOTALITEMS The number of successfully processed cash-

in items can be limited by specifying the
total number of items.

WFS_CIM_LIMITBYAMOUNT The number of successfully processed cash-
in items can be limited by specifying the
total amount.

fwCountActions
Specifies the count action supported by the WFS_CMD_CIM_CASH_UNIT_COUNT command.
If the device does not support counting then this field will be WFS_CIM_COUNTNOTSUPP.
Otherwise this field will be set to a combination of the following flags:

Value Meaning
WFS_CIM_COUNTINDIVIDUAL The counting of individual cash units via the

input structure of the
WFS_CMD_CIM_CASH_UNIT_COUNT
command is supported.

WFS_CIM_COUNTALL The counting of all cash units via the NULL
pointer input parameter of the
WFS_CMD_CIM_CASH_UNIT_COUNT
command is supported.

bDeviceLockControl
Specifies whether the CIM supports physical lock/unlock control of the CIM device and/or the
cash units. If this value is set to TRUE, the device and/or the cash units can be locked and
unlocked by the WFS_CMD_CIM_DEVICE_LOCK_CONTROL command, and the lock status
can be retrieved by the WFS_INF_CIM_DEVICELOCK_STATUS command. If this value is set
to FALSE, the CIM will not support the physical lock/unlock control of the CIM device or the
cash units; the WFS_CMD_CIM_DEVICE_LOCK_CONTROL command will return
WFS_ERR_UNSUPP_COMMAND and the WFS_INF_CIM_DEVICELOCK_STATUS
command will return WFS_ERR_UNSUPP_CATEGORY.

wMixedMode
Specifies whether the device supports accepting and processing items other than the types defined
in the CIM specification. For a description of Mixed Media transactions see section ATM Mixed
Media Transaction Flow – Application Guidelines. If the device does not support Mixed Media
processing this field will be WFS_CIM_MIXEDMEDIANOTSUPP. Otherwise this field will be
set to the following value:

CWA 16374-15:2011 (E)

23

Value Meaning
WFS_CIM_IPMMIXEDMEDIA Mixed Media transactions are supported

using the CIM and IPM interfaces.

bMixedDepositAndRollback
Specifies whether the device can deposit one type of media and rollback the other in the same
Mixed Media transaction. Where bMixedDepositAndRollback is TRUE the Service Provider can
accept WFS_CMD_CIM_CASH_IN_END and WFS_CMD_IPM_MEDIA_IN_ROLLBACK or
WFS_CMD_CIM_CASH_IN_ROLLBACK and WFS_CMD_IPM_MEDIA_IN_END to
complete the current transaction. This value can only be TRUE where wMixedMode ==
WFS_CIM_IPMMIXEDMEDIA. When bMixedDepositAndRollback is FALSE applications must
either deposit or return ALL items to complete a transaction. Where Mixed Media transactions are
not supported bMixedDepositAndRollback is FALSE.

bAntiFraudModule
Specifies whether the anti-fraud module is available. This can either be TRUE if available or
FALSE if not available.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which rely on the lpszExtra field may not be device or vendor-independent. The
table below defines the valid combinations of bShutter, bShutterControl and
WFSCIMPOSCAPS.bPresentControl.

bShutter bShutterControl WFSCIMPOSCAPS

.bPresentControl
Description

TRUE TRUE TRUE Service Provider implicitly opens the shutter,
presents items and closes the shutter when all
items are taken.

TRUE TRUE FALSE Service Provider implicitly opens the shutter for
input. Application required to present items using
WFS_CMD_CIM_PRESENT_MEDIA.

TRUE FALSE TRUE Application is required to present items using
WFS_CMD_CIM_OPEN_SHUTTER and then
call WFS_CMD_CIM_CLOSE_SHUTTER when
all items are taken.

TRUE FALSE FALSE Application required to present items using
WFS_CMD_CIM_PRESENT_MEDIA , or
alternatively, by using,
WFS_CMD_CIM_OPEN_SHUTTER and then
WFS_CMD_CIM_CLOSE_SHUTTER when all
items are taken.

FALSE TRUE TRUE Service Provider implicitly opens the shutter,
presents items and closes the shutter when all
items taken.

FALSE TRUE FALSE Service Provider implicitly opens the shutter for
input. Application required to present items using
WFS_CMD_CIM_PRESENT_MEDIA.

FALSE FALSE TRUE Not Supported.
FALSE FALSE FALSE Application required to present items using

WFS_CMD_CIM_PRESENT_MEDIA.

CWA 16374-15:2011 (E)

24

5.3 WFS_INF_CIM_CASH_UNIT_INFO

Description This command is used to obtain information about the status and contents of the cash-in units and
recycle units in the CIM.

Where a logical cash-in unit or recycle unit is configured but there is no corresponding physical
cash unit currently present in the device, information about the missing cash-in unit or recycle
unit will still be returned in the lppCashIn field of the output parameter. The status of the cash-in
unit or recycle unit will be reported as WFS_CIM_STATCUMISSING.

It is possible that one logical cash-in unit or recycle unit may be associated with more than one
physical cash unit. In this case, the number of cash unit structures returned in lpCashInfo will
reflect the number of logical cash-in units or recycle units in the CIM. That is, if a system
contains four physical cash-in units but two of these are treated as one logical cash-in unit,
lpCashInfo will contain information about the three logical cash-in units and a usCount of 3.
Information about the physical cash-in unit(s) or recycle unit(s) associated with a logical cash-in
unit or recycle unit is contained in the WFSCIMCASHUNIT structure representing the logical
cash-in unit or recycle unit.

It is also possible that multiple logical cash-in units or recycle units may be associated with one
physical cash unit. This should only occur if the physical cash unit is capable of handling this
situation, i.e. if it can store multiple denominations and report meaningful count and
replenishment information for each denomination. In this case the information returned in
lpCashInfo will again reflect the number of logical cash-in units or recycle units in the CIM.

Counts

Item counts are typically based on software counts and therefore may not represent the actual
number of items in the cash unit.

Persistent values are maintained through power failures, open sessions, close session and system
resets.

If a cash unit is shared between the CDM and CIM device class, then CDM operations will result
in count changes in the CIM cash unit structure and vice versa. All counts are reported
consistently on both interfaces at all times.

Threshold Events

The threshold event, WFS_USRE_CIM_CASHUNITTHRESHOLD
(WFS_CIM_STATCUHIGH), can be triggered either by hardware sensors in the device or by the
ulCount reaching the ulMaximum value.

For a cash unit of type WFS_CIM_TYPERETRACTCASSETTE, it is also possible that the
threshold event can instead be triggered by the ulCashInCount reaching the ulMaximum value.
For more detail see the bRetractNoteCountThresholds field description in the
WFS_INF_CIM_CASH_UNIT_CAPABILITIES command.

The application can also use the WFS_INF_CIM_CASH_UNIT_CAPABILITIES command to
check if the device has the capability to trigger the threshold event from hardware sensors by
querying the bHardwareSensors field of the physical cash unit structure. If any of the physical
cash units associated with the logical cash unit have this capability, then threshold events based
on hardware sensors may be triggered.

In the situation where the cash unit is associated with multiple physical cash units.
WFS_SRVE_CIM_CASHUNITINFOCHANGED can be generated when each of the physical
cash units reaches the threshold. When the final physical cash unit reaches the threshold, the
WFS_USRE_CIM_CASHUNITTHRESHOLD (WFS_CIM_STATCUHIGH), event will be
generated.

Exchanges

If a physical cash unit is inserted (including removal followed by a reinsertion) when the device is
not in the exchange state the usPStatus of the physical cash unit will be set to
WFS_CIM_STATCUMANIP and the values of the physical cash unit prior to its’ removal will be
returned in any subsequent WFS_INF_CIM_CASH_UNIT_INFO command. The physical cash
unit will not be used in any operation. The application must perform an exchange operation
specifying the new values for the physical cash unit in order to recover the situation.

CWA 16374-15:2011 (E)

25

On recycle and retract cash units the counts and status reflect the physical status of the cassette
and therefore are consistently reported on both the CDM and CIM interfaces. When a value is
changed through an exchange on one interface it is also changed on the other.

Recyclers

The CIM interface reports all cash units including cash-out only cash units. The CDM interface
does not report cash-in only cash units but does report cash units used on both interfaces, i.e.
recycle cash units (WFS_CIM_TYPERECYCLING) and reject/retract cash units
(WFS_CIM_TYPEREJECT / WFS_CIM_TYPERETRACTCASSETTE).

Input Param None.

Output Param LPWFSCIMCASHINFO lpCashInfo;
typedef struct _wfs_cim_cash_info
 {
 USHORT usCount;
 LPWFSCIMCASHIN *lppCashIn;
 } WFSCIMCASHINFO, *LPWFSCIMCASHINFO;

usCount
Number of WFSCIMCASHIN structures returned in lppCashIn.

lppCashIn
Pointer to an array of pointers to WFSCIMCASHIN structures:

typedef struct _wfs_cim_cash_in
 {
 USHORT usNumber;
 DWORD fwType;
 DWORD fwItemType;
 CHAR cUnitID[5];
 CHAR cCurrencyID[3];
 ULONG ulValues;
 ULONG ulCashInCount;
 ULONG ulCount;
 ULONG ulMaximum;
 USHORT usStatus;
 BOOL bAppLock;
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
 USHORT usNumPhysicalCUs;
 LPWFSCIMPHCU *lppPhysical;
 LPSTR lpszExtra;
 LPUSHORT lpusNoteIDs;
 WORD usCDMType;
 LPSTR lpszCashUnitName;
 ULONG ulInitialCount;
 ULONG ulDispensedCount;
 ULONG ulPresentedCount;
 ULONG ulRetractedCount;
 ULONG ulRejectCount;
 ULONG ulMinimum;
 } WFSCIMCASHIN, *LPWFSCIMCASHIN;

usNumber
Index number of the cash unit structure. Each structure has a unique logical number starting
with a value of one (1) for the first structure, and incrementing by one for each subsequent
structure.

fwType
Specifies the type of cash unit as one of the following values:

Value Meaning
WFS_CIM_TYPERECYCLING Recycle cash unit. This type of cash unit

is present only when the device is a cash
recycler. It can be used for cash
dispensing.

WFS_CIM_TYPECASHIN Cash-in cash unit.

CWA 16374-15:2011 (E)

26

WFS_CIM_TYPEREPCONTAINER Replenishment container. A cash unit can
be refilled from or emptied to a
replenishment container.

WFS_CIM_TYPERETRACTCASSETTE Retract cash unit.
WFS_CIM_TYPEREJECT Reject cash unit.
WFS_CIM_TYPECDMSPECIFIC A cash unit that is only applicable to the

CDM interface. This value is used to
report CDM cash units of the following
types: WFS_CDM_TYPENA,
WFS_CDM_TYPEBILLCASSETTE,
WFS_CDM_TYPECOINCYLINDER,
WFS_CDM_TYPECOINDISPENSER,
WFS_CDM_TYPECOUPON and
WFS_CDM_TYPEDOCUMENT. See
the usCDMType field for details of the
cash unit type.

fwItemType
Specifies the type of items the cash unit takes as a combination of the following flags. The
table in the Comments section of this command defines how to interpret the combination of
these flags:

Value Meaning
WFS_CIM_CITYPALL The cash-in unit takes all fit banknote

types. If a note handling standard is
supported, then these are level 4 notes
which are fit for recycling.

WFS_CIM_CITYPUNFIT The cash-in unit takes all unfit
banknotes. If a note handling standard is
supported, then these are level 4 notes
which are unfit for recycling.

WFS_CIM_CITYPINDIVIDUAL The cash-in unit or recycle cash unit
takes all types of fit banknotes specified
in an individual list. If a note handling
standard is supported, then these are level
4 notes which are fit for recycling.

WFS_CIM_CITYPLEVEL2 If a note handling standard is supported,
then level 2 note types are stored in this
cash-in unit.

WFS_CIM_CITYPLEVEL3 If a note handling standard is supported,
then level 3 note types are stored in this
cash-in unit.

WFS_CIM_CITYPIPM The cash-in unit can accept items on the
IPM interface.

Support for classifying validated notes as 'unfit' is hardware dependent. On h/w that cannot
classify notes as 'unfit', all validated banknotes will be treated as 'fit' and accepted by cash
units of type WFS_CIM_CITYPALL and/or WFS_CIM_CITYPINDIVIDUAL. On such h/w
the value WFS_CIM_CITYPUNFIT will not be used.

On h/w that can classify notes as 'unfit', validated 'fit' banknotes will be accepted by cash units
of type WFS_CIM_CITYPALL and/or WFS_CIM_CITYPINDIVIDUAL. If the cash unit is
configured as a combination of WFS_CIM_CITYPALL or WFS_CIM_CITYPINDIVIDUAL
with WFS_CIM_CITYPUNFIT then the cash unit accepts valid 'fit' and 'unfit' banknote types.

This value is zero for cash units that cannot accept media items, i.e. cash units that can only
dispense, or for cash units that are configured not to accept any items. It may be possible to
use the command WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS to configure the cash
unit to accept media.

cUnitID
The Cash Unit Identifier.

CWA 16374-15:2011 (E)

27

cCurrencyID
A three character array storing the ISO format currency ID [Ref. 2]. This value will be an
array of three ASCII 0x20h characters for cash units which contain items of more than one
currency type or items to which currency is not applicable. If the usStatus field for this cash
unit is WFS_CIM_STATCUNOVAL it is the responsibility of the application to assign a
value to this field. This value is persistent.

ulValues
Supplies the value of a single item in the cash unit. This value is expressed in minimum
dispense units (see section WFS_INF_CIM_CURRENCY_EXP). If the cCurrencyID field for
this cash unit is an array of three ASCII 0x20h characters or the cash unit is configured to
accept more than one denomination of note then this field will contain zero. The value of the
notes stored in the cash unit can be calculated from the contents of lpNoteNumberList and the
data returned from the WFS_INF_CIM_BANKNOTE_TYPES command. If the usStatus field
for this cash unit is WFS_CIM_STATCUNOVAL it is the responsibility of the application to
assign a value to this field. This value is persistent.

ulCashInCount
Count of items that have entered the logical cash unit. This counter is incremented whenever
an item enters a physical cash unit that belongs to this logical cash unit for any reason. For a
retract cash unit this value represents the total number of items of all types in the cash unit, or
if the device cannot count items during a retract operation this value will be zero. If fwType is
WFS_CIM_TYPECDMSPECIFIC then this value is zero. This value is persistent.

ulCount
The meaning of this count depends on the type of cash unit. This value is persistent.

For all cash units except retract cash units (fwType is not
WFS_CIM_TYPERETRACTCASSETTE) this value reports the total number of banknotes,
checks or coins of all types in the cash unit.

For cash units supporting the fwItemType WFS_CIM_CITYPIPM the number of banknotes or
coins contained in the cash unit can be determined from lpNoteNumberList.

If the cash unit is a recycle cash unit (fwType is WFS_CIM_TYPERECYCLING) then this
value may not be the same as the value of ulCashInCount. This value will be decremented as a
result of a dispense transaction on the CDM interface. During dispense transactions on the
CDM, this value includes any items that have been dispensed but not yet presented to the
customer. This count is only decremented when these items are either known to be in customer
access, successfully rejected or moved to another cash unit.

If the cash unit is a retract cash unit (fwType is WFS_CIM_TYPERETRACTCASSETTE)
then this value will not normally be the same as the value of ulCashInCount. This value
specifies the number of retract operations (CIM commands, CDM commands and error
recovery) which result in items entering the cash unit.

If the cash unit is CDM specific (fwType is WFS_CIM_TYPECDMSPECIFIC) then this value
will be reported as defined in the CDM interface specification.

ulMaximum
When the ulCount reaches this value the threshold event
WFS_USRE_CIM_CASHUNITTHRESHOLD (WFS_CIM_STATCUHIGH) will be
generated. If this value is non-zero then hardware sensors in the device do not trigger
threshold events. If this value is zero then hardware sensors may trigger threshold events.

usStatus
Describes the status of the cash unit as one of the following values:

Value Meaning
WFS_CIM_STATCUOK The cash unit is in a good state.
WFS_CIM_STATCUFULL The cash unit is full. This value is not

used for CDM specific cash units
(fwType ==
WFS_CIM_TYPECDMSPECIFIC).

CWA 16374-15:2011 (E)

28

WFS_CIM_STATCUHIGH The cash unit is almost full (i.e. reached
or exceeded the threshold defined by
ulMaximum). This value is not used for
CDM specific cash units (fwType ==
WFS_CIM_TYPECDMSPECIFIC).

WFS_CIM_STATCULOW The cash unit is almost empty (i.e.
reached or below the threshold defined
by ulMinimum). This value is only
reported for CDM specific cash units
(fwType ==
WFS_CIM_TYPECDMSPECIFIC).

WFS_CIM_STATCUEMPTY The cash unit is empty. On a dispensing
cash unit on a recycler this can be caused
by insufficient items in the cash unit
preventing further dispense operations.

WFS_CIM_STATCUINOP The cash unit is inoperative.
WFS_CIM_STATCUMISSING The cash unit is missing.
WFS_CIM_STATCUNOVAL The values of the specified cash unit are

not available. This can be the case when
the cash unit is changed without using
the operator functions.

WFS_CIM_STATCUNOREF There is no reference value available for
the notes in this cash unit. The cash unit
has not been configured. This value has
no meaning on the CIM and is not used.

WFS_CIM_STATCUMANIP The cash unit has been inserted
(including removal followed by a
reinsertion) when the device was not in
the exchange state. Items cannot be
accepted into this cash unit.

bAppLock
This field does not apply to retract cash units. If this value is TRUE items cannot be accepted
into the cash unit. This parameter is ignored if the hardware does not support this.

lpNoteNumberList
Pointer to a WFSCIMNOTENUMBERLIST structure. The content of this structure is
persistent.

If the cash unit is a CDM specific cash unit (fwType == WFS_CIM_TYPECDMSPECIFIC)
with usCDMType == WFS_CDM_TYPEBILLCASSETTE this pointer will be NULL.

If the cash unit is not a retract cash unit (fwType is not
WFS_CIM_TYPERETRACTCASSETTE), then the lpNoteNumberList will point to the list of
cash items inside the cash unit. Additionally if the contents of the cash unit are not known then
this pointer will be NULL.

If the cash unit is a retract cash unit (fwType == WFS_CIM_TYPERETRACTCASSETTE)
this pointer will be NULL except for the following cases:

• If a note handling standard is supported and the retract cash unit is configured to
accept level 2 notes then the number and type of level 2 notes is returned in the
lpNoteNumberList and ulCount contains the number of retract operations.
ulCashInCount contains the actual number of level 2 notes.

• If items are recognized during retract operations then the number and type of notes
retracted is returned in lpNoteNumberList and ulCount contains the number of retract
operations. ulCashInCount contains the actual number of retracted items.

If both cases apply then the number and type of level 2 notes and notes retracted is returned in
the lpNoteNumberList and ulCount contains the number of retract operations.
ulCashInCount contains the actual number of level 2 notes and retracted items.

CWA 16374-15:2011 (E)

29

typedef struct _wfs_cim_note_number_list
 {
 USHORT usNumOfNoteNumbers;
 LPWFSCIMNOTENUMBER *lppNoteNumber;
 } WFSCIMNOTENUMBERLIST, *LPWFSCIMNOTENUMBERLIST;

usNumOfNoteNumbers
Number of banknote types the cash unit contains, i.e. the size of the lppNoteNumber list.

lppNoteNumber
List of banknote numbers the cash unit contains. A pointer to an array of pointers to
WFSCIMNOTENUMBER structures:

typedef struct _wfs_cim_note_number
 {
 USHORT usNoteID;
 ULONG ulCount;
 } WFSCIMNOTENUMBER, *LPWFSCIMNOTENUMBER;

usNoteID
Identification of note type. The Note ID represents the note identifiers reported by the
WFS_INF_CIM_BANKNOTE_TYPES command. If this value is zero then the note
type is unknown.

ulCount
Actual count of cash items. The value is incremented each time cash items are moved
to a cash unit by a WFSExecute command. In the case of recycle cash units this count
is decremented as defined in the description of the logical ulCount field.

usNumPhysicalCUs
This value indicates the number of physical cash unit structures returned. It must be at least 1.

lppPhysical
Pointer to an array of pointers to WFSCIMPHCU structures:

typedef struct _wfs_cim_physicalcu
 {
 LPSTR lpPhysicalPositionName;
 CHAR cUnitID[5];
 ULONG ulCashInCount;
 ULONG ulCount;
 ULONG ulMaximum;
 USHORT usPStatus;
 BOOL bHardwareSensors;
 LPSTR lpszExtra;
 ULONG ulInitialCount;
 ULONG ulDispensedCount;
 ULONG ulPresentedCount;
 ULONG ulRetractedCount;
 ULONG ulRejectCount;
 } WFSCIMPHCU, *LPWFSCIMPHCU;

lpPhysicalPositionName
A name identifying the physical location of the cash unit within the CIM. This field can be
used by CIMs which are compound with a CDM or IPM to identify shared cash
units/media bins.

cUnitID
A 5 character array uniquely identifying the physical cash unit.

ulCashInCount
As defined by the logical ulCashInCount description but applies to a single physical cash
unit. This value is persistent.

ulCount
As defined by the logical ulCount description but applies to a single physical cash unit.
The one exception is that during dispense transactions on the CDM, this value does not
include any items that have been dispensed but not yet presented. This value is persistent.

CWA 16374-15:2011 (E)

30

ulMaximum
Maximum count of items in the physical cash unit. No threshold event will be generated
when this value is reached. This value is persistent. This field is deprecated. The value for
ulMaximum is reported using the WFS_INF_CIM_CASH_UNIT_CAPABILITIES
command.

usPStatus
Supplies the status of the physical cash unit as one of the following values:

Value Meaning
WFS_CIM_STATCUOK The cash unit is in a good state.
WFS_CIM_STATCUFULL The cash unit is full. This value is not

used for CDM specific cash units
(fwType ==
WFS_CIM_TYPECDMSPECIFIC).

WFS_CIM_STATCUHIGH The cash unit is almost full (reached
or exceeded the threshold defined by
ulMaximum in physical structure).
This value is not used for CDM
specific cash units (fwType ==
WFS_CIM_TYPECDMSPECIFIC).

WFS_CIM_STATCULOW The cash unit is almost empty. This
value is only reported for CDM
specific cash units (fwType ==
WFS_CIM_TYPECDMSPECIFIC).

WFS_CIM_STATCUEMPTY The cash unit is empty. On a
dispensing cash unit on a recycler this
can be caused by insufficient items in
the cash unit preventing further
dispense operations.

WFS_CIM_STATCUINOP The cash unit is inoperative.
WFS_CIM_STATCUMISSING The cash unit is missing (the cash unit

has been removed and is physically
not present in the machine).

WFS_CIM_STATCUNOVAL The values of the specified cash unit
are not available.

WFS_CIM_STATCUNOREF There is no reference value available
for the notes in this cash unit. The
cash unit has not been configured.
This value is only reported for CDM
specific cash units (fwType ==
WFS_CIM_TYPECDMSPECIFIC).

WFS_CIM_STATCUMANIP The cash unit has been inserted
(including removal followed by a
reinsertion) when the device was not
in the exchange state.

bHardwareSensors
Specifies whether or not threshold events can be generated based on hardware sensors in
the device. If this value is TRUE for any of the physical cash units related to a logical cash
unit then threshold events may be generated based on hardware sensors as opposed to
logical counts. This field is deprecated. The value for ulMaximum is reported using the
WFS_INF_CIM_CASH_UNIT_CAPABILITIES command.

lpszExtra
Pointer to a list of vendor-specific information about the physical cash unit. The
information is returned as a series of “key=value” strings so that it is easily extensible by
Service Providers. Each string is null-terminated, with the final string terminating with two
null characters. An empty list may be indicated by either a NULL pointer or a pointer to
two consecutive null characters.

ulInitialCount
Initial number of items contained in this physical cash unit. This value is persistent.

CWA 16374-15:2011 (E)

31

ulDispensedCount
The number of items dispensed from this physical cash unit. This value is persistent. See
the CDM interface specification for details.

ulPresentedCount
The number of items from this physical cash unit that have been presented to the customer
by the CDM interface. This value is persistent. See the CDM interface specification for
details.

ulRetractedCount
The number of items that have been retracted into this physical cash unit. This value is
persistent.

ulRejectCount
The number of items from this physical cash unit which are in a reject bin. This value is
persistent. See the CDM interface specification for details.

lpszExtra
Pointer to a list of vendor-specific information about the logical cash unit. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

lpusNoteIDs
Pointer to a zero-terminated list of unsigned shorts which contains the note IDs of the
banknotes the cash-in cash unit or recycle cash unit can take. This field only applies to
WFS_CIM_CITYPINDIVIDUAL cassette types. If there are no note IDs defined for the
cassette or the cassette is not defined as WFS_CIM_CITYPINDIVIDUAL then lpusNoteIDs
will contain NULL.

usCDMType
The type of cash unit reported for the corresponding cash unit on the CDM interface. See the
CDM interface specification for details. For CIM only cash units this value is zero.

lpszCashUnitName
An application defined name to help identify the content of the cash unit. This value can be
NULL.

ulInitialCount
Initial number of items contained in the logical cash unit. This value is persistent.

ulDispensedCount
The number of items dispensed from all the physical cash units associated with this logical
cash unit. This value is persistent. See the CDM interface specification for details.

ulPresentedCount
The number of items from all the physical cash units associated with this logical cash unit that
have been presented to the customer by the CDM interface. This value is persistent. See the
CDM interface specification for details.

ulRetractedCount
The number of items that have been retracted into all physical cash units associated with this
logical cash unit. This value is persistent.

ulRejectCount
The number of items from this logical cash unit which are in a reject bin. This value is
persistent.

ulMinimum
This field is only applicable to CDM cash units which can dispense media items. This value is
persistent. See the CDM interface specification for details.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments The following table defines the interpretation of the fwItemType flag for single values and a sub-
set of possible combinations (many of which may not actually be possible on physical hardware
implementations). The check mark means that the corresponding flag is set, empty means that the
corresponding flag is not set.

CWA 16374-15:2011 (E)

32

For a definition of the terms 'fit' and 'unfit' see the description of fwItemType itself. The
combinations not included in this table can be interpolated from this table.

ALL UNFIT INDIVIDUAL LEVEL 3 LEVEL 2 Description
√ Fit notes for all note ids
 √ Unfit notes for all note ids
 √ Fit notes from the Individual note list
 √ Level 3 notes for all note ids
 √ Level 2 notes for all note ids
√ √ Fit notes for all note ids & unfit notes for all note

ids
√ √ Fit notes for all note ids & level 3 notes for all note

ids
√ √ Fit notes for all note ids & level 2 notes for all note

ids
√ √ √ Fit notes for all note ids & level 3 notes for all note

ids & level 2 notes for all note ids
√ √ √ √ Fit notes for all note ids & unfit notes for all note

ids & level 3 notes for all note ids & level 2 notes
for all note ids

 √ √ Fit notes from the Individual note list & unfit notes
for all note ids

 √ √ Fit notes from the Individual note list & level 3
notes for all note ids.

 √ √ Fit notes from the Individual note list & level 2
notes for all note ids.

 √ √ √ Fit notes from the Individual note list & level 3
notes for all note ids & level 2 notes for all note ids.

 √ √ √ √ Fit notes from the Individual note list & unfit notes
for all note ids & level 3 notes for all note ids &
level 2 notes for all note ids.

Note: WFS_CIM_CITYPALL always overrides WFS_CIM_CITYPINDIVIDUAL when these
values are combined.
WFS_CIM_CITYPIPM can be combined with any other combination and indicates non-note
items can be stored in this cash unit.

CWA 16374-15:2011 (E)

33

5.4 WFS_INF_CIM_TELLER_INFO

Description This command allows the application to obtain counts for each currency assigned to the teller. It
also enables the application to obtain the position assigned to each teller. If the input parameter is
NULL, this command will return information for all tellers and all currencies. The teller
information is persistent.

Input Param LPWFSCIMTELLERINFO lpTellerInfo;
typedef struct _wfs_cim_teller_info
 {
 USHORT usTellerID;
 CHAR cCurrencyID[3];
 } WFSCIMTELLERINFO, *LPWFSCIMTELLERINFO;

usTellerID
Identification of teller. If the value of usTellerID is not valid the error
WFS_ERR_CIM_INVALIDTELLERID is reported.

cCurrencyID
Three character ISO format currency identifier [Ref. 2].

This parameter can be an array of three ASCII 0x20 characters. In this case information on all
currencies will be returned.

Output Param LPWFSCIMTELLERDETAILS *lppTellerDetails;

Pointer to a NULL-terminated array of pointers to WFSCIMTELLERDETAILS structures.
typedef struct _wfs_cim_teller_details
 {
 USHORT usTellerID;
 WORD fwInputPosition;
 WORD fwOutputPosition;
 LPWFSCIMTELLERTOTALS *lppTellerTotals;
 } WFSCIMTELLERDETAILS, *LPWFSCIMTELLERDETAILS;

usTellerID
Identification of teller.

fwInputPosition
The input position assigned to the teller for cash entry. The value is set to one of the following
values:

Value Meaning
WFS_CIM_POSNULL No position is assigned to the teller.
WFS_CIM_POSINLEFT The left position is assigned to the teller.
WFS_CIM_POSINRIGHT The right position is assigned to the teller.
WFS_CIM_POSINCENTER The center position is assigned to the teller.
WFS_CIM_POSINTOP The top position is assigned to the teller.
WFS_CIM_POSINBOTTOM The bottom position is assigned to the teller.
WFS_CIM_POSINFRONT The front position is assigned to the teller.
WFS_CIM_POSINREAR The rear position is assigned to the teller.

fwOutputPosition
The output position from which cash is presented to the teller. The value is set to one of the
following values:

Value Meaning
WFS_CIM_POSNULL No position is assigned to the teller.
WFS_CIM_POSOUTLEFT The left position is assigned to the teller.
WFS_CIM_POSOUTRIGHT The right position is assigned to the teller.
WFS_CIM_POSOUTCENTER The center position is assigned to the teller.
WFS_CIM_POSOUTTOP The top position is assigned to the teller.
WFS_CIM_POSOUTBOTTOM The bottom position is assigned to the teller.
WFS_CIM_POSOUTFRONT The front position is assigned to the teller.
WFS_CIM_POSOUTREAR The rear position is assigned to the teller.

CWA 16374-15:2011 (E)

34

lppTellerTotals
Pointer to a NULL-terminated array of pointers to WFSCIMTELLERTOTALS structures.

typedef struct _wfs_cim_teller_totals
 {
 CHAR cCurrencyID[3];
 ULONG ulItemsReceived;
 ULONG ulItemsDispensed;
 ULONG ulCoinsReceived;
 ULONG ulCoinsDispensed;
 ULONG ulCashBoxReceived;
 ULONG ulCashBoxDispensed;
 } WFSCIMTELLERTOTALS, *LPWFSCIMTELLERTOTALS;

cCurrencyID
Three character ISO format currency identifier [Ref. 2].

ulItemsReceived
The total amount of item currency (excluding coins) accepted. The amount is expressed in
minimum dispense units (see section WFS_INF_CIM_CURRENCY_EXP).

ulItemsDispensed
The total amount of item currency (excluding coins) dispensed. The amount is expressed in
minimum dispense units (see section WFS_INF_CIM_CURRENCY_EXP).

ulCoinsReceived
The total amount of coin currency accepted. The amount is expressed in minimum dispense
units (see section WFS_INF_CIM_CURRENCY_EXP).

ulCoinsDispensed
The total amount of coin currency dispensed. The amount is expressed in minimum dispense
units (see section WFS_INF_CIM_CURRENCY_EXP).

ulCashBoxReceived
The total amount of cash box currency accepted. The amount is expressed in minimum
dispense units (see section WFS_INF_CIM_CURRENCY_EXP).

ulCashBoxDispensed
The total amount of cash box currency dispensed. The amount is expressed in minimum
dispense units (see section WFS_INF_CIM_CURRENCY_EXP).

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_INVALIDCURRENCY Specified currency not currently available.
WFS_ERR_CIM_INVALIDTELLERID Invalid teller ID.

Comments None.

CWA 16374-15:2011 (E)

35

5.5 WFS_INF_CIM_CURRENCY_EXP

Description This command returns each exponent assigned to each currency known to the Service Provider.

Input Param None.

Output Param LPWFSCIMCURRENCYEXP *lppCurrencyExp;

Pointer to a NULL-terminated array of pointers to WFSCIMCURRENCYEXP structures:
typedef struct _wfs_cim_currency_exp
 {
 CHAR cCurrencyID[3];
 SHORT sExponent;
 } WFSCIMCURRENCYEXP, *LPWFSCIMCURRENCYEXP;

cCurrencyID
Currency identifier in ISO 4217 format [Ref. 2].

sExponent
Currency exponent in ISO 4217 format [Ref. 2].

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments For each currency ISO 4217 defines the currency identifier (a three character code) and a currency
unit (e.g. European Euro, Japanese Yen). In the interface defined by this specification, every
money amount is specified in terms of multiples of the minimum dispense unit, which is equal to
the currency unit times ten to the power of the currency exponent. Thus an amount parameter
relates to the actual cash amount as follows:

<cash_amount> = <money_amount_parameter> * 10^<sExponent>

Example #1 - Euro
Currency identifier is ‘EUR’
Currency unit is 1 Euro (= 100 Cent)

A Service Provider is developed for an ATM that can dispense coins down to one Cent. The
currency exponent (sExponent) is set to -2 (minus two), so the minimum dispense unit is one Cent
(1 * 10^-2 Euro); all amounts at the XFS interface are in Cent. Thus a money amount parameter
of 10050 is 100 Euro and 50 Cent.

Example #2 - Japan
Currency identifier is ‘JPY’
Currency unit is 1 Japanese Yen

A Service Provider is required to dispense a minimum amount of 1000 Yen. The currency
exponent (sExponent) is set to +3 (plus three), so the minimum dispense unit is 1000 Yen; all
amounts at the XFS interface are in multiples of 1000 Yen. Thus an amount parameter of 15 is
15000 Yen.

CWA 16374-15:2011 (E)

36

5.6 WFS_INF_CIM_BANKNOTE_TYPES

Description This command is used to obtain information about the banknote types that can be detected by the
banknote reader.

Input Param None.

Output Param LPWFSCIMNOTETYPELIST lpNoteTypeList;
typedef struct _wfs_cim_note_type_list
 {
 USHORT usNumOfNoteTypes;
 LPWFSCIMNOTETYPE *lppNoteTypes;
 } WFSCIMNOTETYPELIST, *LPWFSCIMNOTETYPELIST;

usNumOfNoteTypes
Number of banknote types the banknote reader supports, i.e. the size of the lppNoteTypes list.

lppNoteTypes
List of banknote types the banknote reader supports. A pointer to an array of pointers to
WFSCIMNOTETYPE structures:

typedef struct _wfs_cim_note_type
 {
 USHORT usNoteID;
 CHAR cCurrencyID[3];
 ULONG ulValues;
 USHORT usRelease;
 BOOL bConfigured;
 } WFSCIMNOTETYPE, *LPWFSCIMNOTETYPE;

usNoteID
Identification of note type.

cCurrencyID
Currency ID in ISO 4217 format [Ref. 2].

ulValues
The value of a single item expressed in minimum dispense units.

usRelease
The release of the banknote type. The higher this number is, the newer the release. Zero means
that there is only one release of that banknote type. This value has not been standardized and
therefore a release number of the same banknote will not necessarily have the same value in
different systems.

bConfigured
Specifies whether or not the banknote reader recognizes this note type. If TRUE the banknote
reader will accept this note type during a cash-in operation, if FALSE the banknote reader will
refuse this note type.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16374-15:2011 (E)

37

5.7 WFS_INF_CIM_CASH_IN_STATUS

Description This command is used to get information about the status of the last cash-in transaction. This
value is persistent and is valid until the next command WFS_CMD_CIM_CASH_IN_START.

Input Param None.

Output Param LPWFSCIMCASHINSTATUS lpCashInStatus;
typedef struct _wfs_cim_cash_in_status
 {
 WORD wStatus;
 USHORT usNumOfRefused;
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
 LPSTR lpszExtra;
 } WFSCIMCASHINSTATUS, *LPWFSCIMCASHINSTATUS;

wStatus
Status of the cash-in transaction. Possible values are:

Value Meaning
WFS_CIM_CIOK The cash-in transaction is complete.
WFS_CIM_CIROLLBACK The cash-in transaction was rolled back.
WFS_CIM_CIACTIVE There is a cash-in transaction active.
WFS_CIM_CIRETRACT The cash-in transaction ended with the items

being retracted.
WFS_CIM_CIUNKNOWN The state of the cash-in transaction is

unknown.
WFS_CIM_CIRESET The cash-in transaction ended when the

WFS_CMD_CIM_RESET or
WFS_CMD_IPM_RESET command was
executed.

usNumOfRefused
Specifies the number of items refused during the cash-in transaction period.

lpNoteNumberList
List of banknote types that were inserted, identified and accepted during the cash-in transaction
period. The WFSCIMNOTENUMBER.ulCount value within this structure is the count of items of
identified and accepted notes during the cash-in transaction period. If notes have been rolled back
they will be included in this list. If wStatus is WFS_CIM_RETRACT only identified and accepted
notes are included in this list. For a description of the WFSCIMNOTENUMBERLIST structure
see the definition of the command WFS_INF_CIM_CASH_UNIT_INFO.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16374-15:2011 (E)

38

5.8 WFS_INF_CIM_GET_P6_INFO

Description This command is used to get information about the number of level 2 / level 3 notes detected and
the number of level 2 / level 3 signatures created. The level 2 / level 3 information is available
from the point where the WFS_EXEE_CIM_INPUT_P6 (or WFS_EXEE_CDM_INPUT_P6)
event is generated until one of the following CIM commands is executed:

WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN,
WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END,
WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET,
WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE,
WFS_CMD_CIM_CREATE_P6_SIGNATURE, WFS_CMD_CIM_REPLENISH,
WFS_CMD_CIM_CASH_UNIT_COUNT.

Additionally for a recycler, the following CDM commands will also invalidate the information:

WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT,
WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_REJECT,
WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER,
WFS_CMD_CDM_RESET, WFS_CMD_CDM_START_EXCHANGE,
WFS_CMD_CDM_END_EXCHANGE, WFS_CMD_CDM_CALIBRATE_CASH_UNIT,
WFS_CMD_CDM_TEST_CASH_UNITS.

Input Param None.

Output Param LPWFSCIMP6INFO *lppP6Info;

Pointer to a NULL-terminated array of pointers to WFSCIMP6INFO structures, one structure for
every level:
typedef struct _wfs_cim_P6_Info
 {
 USHORT usLevel;
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
 USHORT usNumOfSignatures;
 } WFSCIMP6INFO, *LPWFSCIMP6INFO;

usLevel
Defines the note level. Possible values are:

Value Meaning
WFS_CIM_LEVEL_2 Information for level 2 notes.
WFS_CIM_LEVEL_3 Information for level 3 notes.

lpNoteNumberList
List of banknote types that were recognized as level 2 or level 3 notes. The
WFSCIMNOTENUMBER.ulCount values are the count of level 2 or level 3 notes. If the pointer
is NULL, no level 2 or level 3 notes were recognized. For a description of the
WFSCIMNOTENUMBERLIST structure see the definition of the command
WFS_INF_CIM_CASH_UNIT_INFO.

usNumOfSignatures
Number of level 2 or level 3 signatures of this cash-in transaction. If it is zero no signatures are
available.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16374-15:2011 (E)

39

5.9 WFS_INF_CIM_GET_P6_SIGNATURE

Description This command is used to get one specific signature. Signatures are available from the point where
the WFS_EXEE_CIM_INPUT_P6 (or WFS_EXEE_CDM_INPUT_P6) event is generated until
one of the following CIM commands is executed:

WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN,
WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END,
WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET,
WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE,
WFS_CMD_CIM_CREATE_P6_SIGNATURE, WFS_CMD_CIM_REPLENISH,
WFS_CMD_CIM_CASH_UNIT_COUNT.

Additionally for a recycler, the following CDM commands will also invalidate the information:

WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT,
WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_REJECT,
WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER,
WFS_CMD_CDM_RESET, WFS_CMD_CDM_START_EXCHANGE,
WFS_CMD_CDM_END_EXCHANGE, WFS_CMD_CDM_CALIBRATE_CASH_UNIT,
WFS_CMD_CDM_TEST_CASH_UNITS.

This command is used to retrieve the required information on an individual item basis.
Applications should loop retrieving the information for each index and for each level reported
with the WFS_INF_CIM_GET_P6_INFO command.

Input Param LPWFSCIMGETP6SIGNATURE lpGetP6Signature;
typedef struct _wfs_cim_get_P6_signature
 {
 USHORT usLevel;
 USHORT usIndex;
 } WFSCIMGETP6SIGNATURE, *LPWFSCIMGETP6SIGNATURE;

usLevel
Defines the level of the wanted signature. Possible values are:

Value Meaning
WFS_CIM_LEVEL_2 The application wants a level 2 signature.
WFS_CIM_LEVEL_3 The application wants a level 3 signature.

usIndex
Specifies the index (zero to usNumOfSignatures-1) of the required signature.

Output Param LPWFSCIMP6SIGNATURE lpP6Signature;
typedef struct _wfs_cim_P6_signature
 {
 USHORT usNoteId;
 ULONG ulLength;
 DWORD dwOrientation;
 LPVOID lpSignature;
 } WFSCIMP6SIGNATURE, *LPWFSCIMP6SIGNATURE;

usNoteId
Identification of note type.

ulLength
Length of the signature in bytes.

dwOrientation
Orientation of the entered banknote. Specified as one of the following flags:

CWA 16374-15:2011 (E)

40

Value Meaning
WFS_CIM_ORFRONTTOP If note is inserted wide side as the leading

edge, the note was inserted with the front
image facing up and the top edge of the note
was inserted first. If the note is inserted short
side as the leading edge, the note was
inserted with the front image face up and the
left edge was inserted first.

WFS_CIM_ORFRONTBOTTOM If note is inserted wide side as the leading
edge, the note was inserted with the front
image facing up and the bottom edge of the
note was inserted first. If the note is inserted
short side as the leading edge, the note was
inserted with the front image face up and the
right edge was inserted first.

WFS_CIM_ORBACKTOP If note is inserted wide side as the leading
edge, the note was inserted with the back
image facing up and the top edge of the note
was inserted first. If the note is inserted short
side as the leading edge, the note was
inserted with the back image face up and the
left edge was inserted first.

WFS_CIM_ORBACKBOTTOM If note is inserted wide side as the leading
edge, the note was inserted with the back
image facing up and the bottom edge of the
note was inserted first. If the note is inserted
short side as the leading edge, the note was
inserted with the back image face up and the
right edge was inserted first.

WFS_CIM_ORUNKNOWN The orientation for the inserted note can not
be determined.

WFS_CIM_ORNOTSUPPORTED The hardware is not capable to determine the
orientation.

lpSignature
Pointer to the returned signature.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments The application has to call this command multiple in a loop to get all signatures.

CWA 16374-15:2011 (E)

41

5.10 WFS_INF_CIM_GET_ITEM_INFO

Description This command is used to get information about the number of level 2 / level 3 / level 4 notes
detected and the number of level 2 / level 3 / level 4 signatures created. This information is
available from the point where the first WFS_EXEE_CIM_INFO_AVAILABLE event is
generated until one of the following CIM commands is executed:

WFS_CMD_CIM_CASH_IN_START, WFS_CMD_CIM_CASH_IN,
WFS_CMD_CIM_CASH_IN_ROLLBACK, WFS_CMD_CIM_CASH_IN_END,
WFS_CMD_CIM_RETRACT, WFS_CMD_CIM_RESET,
WFS_CMD_CIM_START_EXCHANGE, WFS_CMD_CIM_END_EXCHANGE,
WFS_CMD_CIM_CREATE_P6_SIGNATURE, WFS_CMD_CIM_REPLENISH,
WFS_CMD_CIM_CASH_UNIT_COUNT.

Additionally for a recycler, the following CDM commands will also invalidate the information:

WFS_CMD_CDM_DISPENSE, WFS_CMD_CDM_COUNT, WFS_CMD_CDM_PRESENT,
WFS_CMD_CDM_RETRACT, WFS_CMD_CDM_REJECT,
WFS_CMD_CDM_OPEN_SHUTTER, WFS_CMD_CDM_CLOSE_SHUTTER,
WFS_CMD_CDM_RESET, WFS_CMD_CDM_START_EXCHANGE,
WFS_CMD_CDM_END_EXCHANGE, WFS_CMD_CDM_CALIBRATE_CASH_UNIT,
WFS_CMD_CDM_TEST_CASH_UNITS. This command is similar to the
WFS_INF_CIM_GET_P6_SIGNATURE command but returns additional information for level 2
/ level 3 notes and also returns information relating to level 4 notes. The
WFS_INF_CIM_GET_P6_INFO command, the WFS_INF_CIM_GET_P6_SIGNATURE
command and the WFS_EXEE_CIM_INPUT_P6 event only relate to level 2 and level 3 notes.
The WFS_EXEE_CIM_INPUT_P6 event signals that a suspected forgery has been detected and
is only generated when level 2 and/or level 3 notes are detected.

This command is used to retrieve the required information on an individual item basis.
Applications should loop retrieving the information for each index and for each level reported
with the WFS_EXEE_CIM_INFO_AVAILABLE event.

Input Param LPWFSCIMGETITEMINFO lpGetItemInfo;
typedef struct _wfs_cim_get_item_info
 {
 USHORT usLevel;
 USHORT usIndex;
 DWORD dwItemInfoType;
 } WFSCIMGETITEMINFO, *LPWFSCIMGETITEMINFO;

usLevel
Defines the note level. Possible values are:

Value Meaning
WFS_CIM_LEVEL_2 Information for level 2 notes.
WFS_CIM_LEVEL_3 Information for level 3 notes.
WFS_CIM_LEVEL_4 Information for level 4 notes. This value is

also used to retrieve item information on
systems that do not support note handling
standards.

usIndex
Specifies the index for the item information required (zero to usNumOfItems-1 as reported in the
WFS_EXEE_CIM_INFO_AVAILABLE event).

dwItemInfoType
Specifies the type of information required. This can be a combination of the following flags:

Value Meaning
WFS_CIM_ITEM_SERIALNUMBER Serial Number of the item.
WFS_CIM_ITEM_SIGNATURE Signature of the item.

Output Param LPWFSCIMITEMINFO lpItemInfo;

The data returned by this command relates to a single item (usIndex).

CWA 16374-15:2011 (E)

42

typedef struct _wfs_cim_item_info
 {
 USHORT usNoteID;
 LPWSTR lpszSerialNumber;
 LPWFSCIMP6SIGNATURE lpP6Signature;
 } WFSCIMITEMINFO, *LPWFSCIMITEMINFO;

usNoteID
Identification of note type.

lpszSerialNumber
This field contains the serial number of the item as a Unicode string. A '?' character (0x003F) is
used to represent any serial number character that cannot be recognized. If no serial number is
available or has not been requested then lpszSerialNumber is NULL.

lpP6Signature
This field contains the signature for the item, see the WFS_CMD_CIM_GET_P6_SIGNATURE
command for a description of the contents. If no signature is available or has not been requested
then this field is NULL.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments The application has to call this command multiple times in a loop to get all item information. In
addition, since the item information is not cumulative and can be replaced by any command that
can move notes, it is recommended that applications that are interested in the available
information should query for it following the WFS_EXEE_CIM_INFO_AVAILABLE event but
before any other command is executed.

CWA 16374-15:2011 (E)

43

5.11 WFS_INF_CIM_POSITION_CAPABILITIES

Description This command allows the application to get additional information about the use assigned to each
position available in the device.

Input Param None.

Output Param LPWFSCIMPOSCAPABILITIES lpPosCaps;
typedef struct _wfs_cim_pos_capabilities
 {
 LPWFSCIMPOSCAPS *lppPosCapabilities;
 } WFSCIMPOSCAPABILITIES, *LPWFSCIMPOSCAPABILITIES;

lppPosCapabilities
Pointer to a NULL-terminated array of pointers to WFSCIMPOSCAPS structures. There is one
structure for each position configured in the Service Provider.

typedef struct _wfs_cim_pos_caps
 {
 WORD fwPosition;
 WORD fwUsage;
 BOOL bShutterControl;
 BOOL bItemsTakenSensor;
 BOOL bItemsInsertedSensor;
 WORD fwRetractAreas;
 LPSTR lpszExtra;
 BOOL bPresentControl;
 } WFSCIMPOSCAPS, *LPWFSCIMPOSCAPS;

fwPosition
Specifies one of the CIM input or output positions as one of the following values:

Value Meaning
WFS_CIM_POSINLEFT Left input position.
WFS_CIM_POSINRIGHT Right input position.
WFS_CIM_POSINCENTER Center input position.
WFS_CIM_POSINTOP Top input position.
WFS_CIM_POSINBOTTOM Bottom input position.
WFS_CIM_POSINFRONT Front input position.
WFS_CIM_POSINREAR Rear input position.
WFS_CIM_POSOUTLEFT Left output position.
WFS_CIM_POSOUTRIGHT Right output position.
WFS_CIM_POSOUTCENTER Center output position.
WFS_CIM_POSOUTTOP Top output position.
WFS_CIM_POSOUTBOTTOM Bottom output position.
WFS_CIM_POSOUTFRONT Front output position.
WFS_CIM_POSOUTREAR Rear output position.

fwUsage
Indicates if an output position is used to reject or rollback as a combination of the following
flags:

Value Meaning
WFS_CIM_POSIN It is an input position.
WFS_CIM_POSREFUSE It is an output position used to refuse

items.
WFS_CIM_POSROLLBACK It is an output position used to rollback

items.

bShutterControl
If set to TRUE the shutter is controlled implicitly by the Service Provider. If set to FALSE the
shutter must be controlled explicitly by the application using the
WFS_CMD_CIM_OPEN_SHUTTER and the WFS_CMD_CIM_CLOSE_SHUTTER
commands. In either case the WFS_CMD_CIM_PRESENT_MEDIA command may be used
if the bPresentControl field is reported as FALSE. The bShutterControl field is always set to
TRUE if the described position has no shutter.

CWA 16374-15:2011 (E)

44

bItemsTakenSensor
Specifies whether or not the described position can detect when items at the exit position are
taken by the user. If set to TRUE the Service Provider generates an accompanying
WFS_SRVE_CIM_ITEMSTAKEN event. If set to FALSE this event is not generated. This
field relates to output and refused positions.

bItemsInsertedSensor
Specifies whether the described position has the ability to detect when items have been
inserted by the user. If set to TRUE the Service Provider generates an accompanying
WFS_SRVE_CIM_ITEMSINSERTED event. If set to FALSE this event is not generated.
This field relates to all input positions.

fwRetractAreas
Specifies the areas to which items may be retracted from this position. If the device does not
have a retract capability this field will be WFS_CIM_RA_NOTSUPP. Otherwise this field
will be set to a combination of the following flags:

Value Meaning
WFS_CIM_RA_RETRACT Items may be retracted to a retract cash

unit.
WFS_CIM_RA_REJECT Items may be retracted to a reject cash

unit.
WFS_CIM_RA_TRANSPORT Items may be retracted to the transport.
WFS_CIM_RA_STACKER Items may be retracted to the

intermediate stacker.
WFS_CIM_RA_BILLCASSETTES Items may be retracted to item cassettes,

i.e. cash-in and recycle cash units.

lpszExtra
Pointer to a list of vendor-specific, or any other extended, information. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

bPresentControl
Specifies how the presenting of media items is controlled. If bPresentControl is TRUE then
the WFS_CMD_CIM_PRESENT_MEDIA command is not supported and items are moved to
the output position for removal as part of the relevant command, e.g.
WFS_CMD_CIM_CASH_IN or WFS_CMD_CIM_CASH_IN_ROLLBACK where there is
implicit shutter control. If bPresentControl is FALSE then items returned or rejected can be
moved to the output position using the WFS_CMD_CIM_PRESENT_MEDIA command, this
includes items returned or rejected as part of a WFS_CMD_CIM_CASH_IN or
WFS_CMD_CIM_CASH_IN_ROLLBACK operation. The
WFS_CMD_CIM_PRESENT_MEDIA command will open and close the shutter implicitly.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16374-15:2011 (E)

45

5.12 WFS_INF_CIM_REPLENISH_TARGET

Description This command is used to determine which cash units can be specified as target cash units for a
given source cash unit with the WFS_CMD_CIM_REPLENISH command. For example it can be
used to determine which targets can be used for replenishment from a replenishment container or
from a recycle cash unit.

Input Param LPWFSCIMREPINFO lpReplenishInfo;
typedef struct _wfs_cim_replenish_info
 {
 USHORT usNumberSource;
 } WFSCIMREPINFO, *LPWFSCIMREPINFO;

usNumberSource
Index number of the logical cash unit which would be used as the source of the replenishment
operation. This is the index number identifier defined in the usNumber field of the
WFSCIMCASHIN structure of the output data of the WFS_INF_CIM_CASH_UNIT_INFO
command.

Output Param LPWFSCIMREPINFORES lpReplenishInfoResult;
typedef struct _wfs_cim_replenish_info_result
 {
 LPWFSCIMREPINFOTARGET *lppReplenishTargets;
 } WFSCIMREPINFORES, *LPWFSCIMREPINFORES;

lppReplenishTargets
Pointer to a NULL-terminated array of pointers to WFSCIMREPINFOTARGET structures. This
output parameter will be NULL if no suitable target was found:

typedef struct_wfs_cim_info_target
 {
 USHORT usNumberTarget;
 } WFSCIMREPINFOTARGET, *LPWFSCIMREPINFOTARGET;

usNumberTarget
Index number of the logical cash unit that can be used as a target. This is the index number
identifier defined in the usNumber field of the WFSCIMCASHIN structure of the output data
of the WFS_INF_CIM_CASH_UNIT_INFO command.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16374-15:2011 (E)

46

5.13 WFS_INF_CIM_DEVICELOCK_STATUS

Description This command is used to retrieve the lock/unlock statuses of the CIM device and each of its cash
units. If the physical lock/unlock of both the CIM device and the cash units are not supported then
the WFS_ERR_UNSUPP_CATEGORY error will be returned.

Input Param None.

Output Param LPWFSCIMDEVICELOCKSTATUS lpDevLockStatus;
typedef struct _wfs_cim_device_lock_status
 {
 WORD wDeviceLockStatus;
 LPWFSCIMCASHUNITLOCK *lppCashUnitLock;
 } WFSCIMDEVICELOCKSTATUS, *LPWFSCIMDEVICELOCKSTATUS;

wDeviceLockStatus
Specifies the physical lock/unlock status of the CIM device:

Value Meaning
WFS_CIM_LOCK The device is physically locked.
WFS_CIM_UNLOCK The device is physically unlocked.
WFS_CIM_LOCKUNKNOWN Due to a hardware error or other condition,

the physical lock/unlock status of the device
cannot be determined.

WFS_CIM_LOCKNOTSUPPORTED The Service Provider does not support
physical lock/unlock control of the device.

lppCashUnitLock
Pointer to a NULL-terminated array of pointers to WFSCIMCASHUNITLOCK structures, which
specifies the physical lock/unlock status of cash units. Cash units that do not support the physical
lock/unlock control are not contained in the array. If there are no cash units that support physical
lock/unlock control this will be a NULL pointer.

typedef struct _wfs_cim_cash_unit_lock
 {
 LPSTR lpPhysicalPositionName;
 WORD wCashUnitLockStatus;
 } WFSCIMCASHUNITLOCK, *LPWFSCIMCASHUNITLOCK;

lpPhysicalPositionName
A name identifying the physical location of the cash unit within the CIM. This name is the
same as the lpPhysicalPositionName in the WFSCIMPHCU structure of the
WFS_INF_CIM_CASH_UNIT_INFO command.

wCashUnitLockStatus
Specifies the physical lock/unlock status of cash units supported, as one of the following
values:

Value Meaning
WFS_CIM_LOCK The cash unit is physically locked.
WFS_CIM_UNLOCK The cash unit is physically unlocked.
WFS_CIM_LOCKUNKNOWN Due to a hardware error or other

condition, the physical lock/unlock status
of the cash unit cannot be determined.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16374-15:2011 (E)

47

5.14 WFS_INF_CIM_CASH_UNIT_CAPABILITIES

Description This command is used to retrieve information on cash unit capabilities. It does not provide
information on status or counters of cash units.

This command can be seen as an extension to the WFS_INF_CIM_CASH_UNIT_INFO
command as it will always result in the same contents with regard to usNumber and the physical
cash unit information.

Input Param None.

Output Param LPWFSCIMCASHCAPABILITIES lpCashCaps;
typedef struct _wfs_cim_cash_caps
 {
 USHORT usCount;
 LPWFSCIMCASHUNITCAPABILITIES *lppCashUnitCaps;
 } WFSCIMCASHCAPABILITIES, *LPWFSCIMCASHCAPABILITIES;

usCount
Number of WFSCIMCASHUNITCAPABILITIES structures returned in lppCashUnitCaps.

lppCashUnitCaps
Pointer to an array of pointers to WFSCIMCASHUNITCAPABILITIES structures:

typedef struct _wfs_cim_cash_unit_capabilities
 {
 USHORT usNumber;
 USHORT usNumPhysicalCUs;
 LPWFSCIMPHCUCAPABILITIES *lppPhysical;
 BOOL bRetractNoteCountThresholds;
 LPSTR lpszExtra;
 } WFSCIMCASHUNITCAPABILITIES, *LPWFSCIMCASHUNITCAPABILITIES;

usNumber
Index number of the cash unit structure. Each structure has a unique logical number starting
with a value of one (1) for the first structure, and incrementing by one for each subsequent
structure.

usNumPhysicalCUs
This value indicates the number of physical cash unit structures returned. It must be at least 1.

lppPhysical
Pointer to an array of pointers to WFSCIMPHCUCAPABILITIES structures:

typedef struct _wfs_cim_physicalcu_capabilities
 {
 LPSTR lpPhysicalPositionName;
 ULONG ulMaximum;
 BOOL bHardwareSensors;
 LPSTR lpszExtra;
 } WFSCIMPHCUCAPABILITIES, *LPWFSCIMPHCUCAPABILITIES;

lpPhysicalPositionName
A name identifying the physical location of the cash unit within the CIM. This field can be
used by CIMs which are compound with a CDM or IPM to identify shared cash
units/media bins.

ulMaximum
Maximum count of items in the physical cash unit. No threshold event will be generated
when this value is reached. This value is persistent.

bHardwareSensors
Specifies whether or not threshold events can be generated based on hardware sensors in
the device. If this value is TRUE for any of the physical cash units related to a logical cash
unit then threshold events may be generated based on hardware sensors as opposed to
logical counts.

CWA 16374-15:2011 (E)

48

lpszExtra
Pointer to a list of vendor-specific information about the physical cash unit. The
information is returned as a series of “key=value” strings so that it is easily extensible by
Service Providers. Each string is null-terminated, with the final string terminating with two
null characters. An empty list may be indicated by either a NULL pointer or a pointer to
two consecutive null characters.

bRetractNoteCountThresholds
This field is only valid for cash units of type WFS_CIM_TYPERETRACTCASSETTE. It
specifies whether the CIM retract cassette capacity is based on the number of notes, and
therefore whether threshold events are generated based on note counts or the number of retract
operations. If this value is set to TRUE, threshold events for retract cassettes are generated
based on the number of notes, when ulCashInCount reaches the ulMaximum value. If this
value is set to FALSE, threshold events for retract cassettes are generated based on the number
of retract operations, when ulCount reaches the ulMaximum value.

lpszExtra
Pointer to a list of vendor-specific information about the logical cash unit. The information is
returned as a series of “key=value” strings so that it is easily extensible by Service Providers.
Each string is null-terminated, with the final string terminating with two null characters. An
empty list may be indicated by either a NULL pointer or a pointer to two consecutive null
characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16374-15:2011 (E)

49

6. Execute Commands

6.1 WFS_CMD_CIM_CASH_IN_START

Description Before initiating a cash-in operation, an application must issue the
WFS_CMD_CIM_CASH_IN_START command to begin a cash-in transaction. During a cash-in
transaction any number of WFS_CMD_CIM_CASH_IN commands may be issued. The
transaction is ended when either a WFS_CMD_CIM_CASH_IN_ROLLBACK,
WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_RETRACT or WFS_CMD_CIM_RESET
command is sent.

WFS_CMD_CIM_RETRACT will terminate a transaction. In this case
WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_CASH_IN_ROLLBACK and
WFS_CMD_CIM_CASH_IN will report WFS_ERR_CIM_NOCASHINACTIVE. If an
application wishes to determine where the notes went during a transaction it can execute a
WFS_INF_CIM_CASH_UNIT_INFO before and after the transaction and then derive the
difference.

Input Param LPWFSCIMCASHINSTART lpCashInStart;
typedef struct _wfs_cim_cash_in_start
 {
 USHORT usTellerID;
 BOOL bUseRecycleUnits;
 WORD fwOutputPosition;
 WORD fwInputPosition;
 } WFSCIMCASHINSTART, *LPWFSCIMCASHINSTART;

usTellerID
Identification of teller. This field is not applicable to Self-Service CIMs and should be set to zero.

bUseRecycleUnits
Specifies whether or not the recycle cash units should be used for money cashed in during the
transaction period. This parameter will be ignored if there are no recycle cash units or the
hardware does not support this.

fwOutputPosition
The output position where the items will be presented to the customer in the case of a rollback.
The position is set to one of the following values:

Value Meaning
WFS_CIM_POSNULL The items will be presented to the default

configuration.
WFS_CIM_POSOUTLEFT The items will be presented to the left output

position.
WFS_CIM_POSOUTRIGHT The items will be presented to the right

output position.
WFS_CIM_POSOUTCENTER The items will be presented to the center

output position.
WFS_CIM_POSOUTTOP The items will be presented to the top output

position.
WFS_CIM_POSOUTBOTTOM The items will be presented to the bottom

output position.
WFS_CIM_POSOUTFRONT The items will be presented to the front

output position.
WFS_CIM_POSOUTREAR The items will be presented to the rear

output position.

fwInputPosition
Specifies from which position the cash should be inserted. The position is set to one of the
following values:

Value Meaning
WFS_CIM_POSNULL The cash is inserted from the default

configuration.

CWA 16374-15:2011 (E)

50

WFS_CIM_POSINLEFT The cash is inserted from the left input
position.

WFS_CIM_POSINRIGHT The cash is inserted from the right input
position.

WFS_CIM_POSINCENTER The cash is inserted from the center input
position.

WFS_CIM_POSINTOP The cash is inserted from the top input
position.

WFS_CIM_POSINBOTTOM The cash is inserted from the bottom input
position.

WFS_CIM_POSINFRONT The cash is inserted from the front input
position.

WFS_CIM_POSINREAR The cash is inserted from the rear input
position.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_INVALIDTELLERID The teller ID is invalid. This error will never

be generated by a Self-Service CIM.
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in the exchange state.
WFS_ERR_CIM_CASHINACTIVE The CIM is already in the cash-in state due

to a previous
WFS_CMD_CIM_CASH_IN_START
command.

WFS_ERR_CIM_SAFEDOOROPEN The safe door is open. This device requires
the safe door to be closed in order to perform
a WFS_CMD_CIM_CASH_IN_START
command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16374-15:2011 (E)

51

6.2 WFS_CMD_CIM_CASH_IN

Description This command moves items into the CIM from an input position.

On devices with implicit shutter control, the WFS_EXEE_CIM_INSERTITEMS event will be
generated when the device is ready to start accepting media.

The items may pass through the banknote reader for identification. Failure to identify items does
not mean that the command has failed - even if some or all of the items are rejected by the
banknote reader, the command may return WFS_SUCCESS. In this case one or more
WFS_EXEE_CIM_INPUTREFUSE events will be sent to report the rejection.

If the device does not have a banknote reader then the output parameter will be NULL.

If the device has a cash-in stacker then this command will cause inserted level 4 items to be
moved there after validation. Level 2 and level 3 items may also be moved to the cash-in stacker,
but some devices may immediately move them to a designated cash unit. Items on the stacker will
remain there until the current cash-in transaction is either cancelled by the
WFS_CMD_CIM_CASH_IN_ROLLBACK command or confirmed by the
WFS_CMD_CIM_CASH_IN_END command. These commands will cause any level 2 or level 3
items on the cash-in stacker to be moved to the appropriate cash unit. If there is no cash-in stacker
then this command will move items directly to the cash units and the
WFS_CMD_CIM_CASH_IN_ROLLBACK command will not be supported. Cash unit
information will be updated accordingly whenever notes are moved to a cash unit during this
command.

The bShutterControl field of the WFSCIMCAPS structure returned from the
WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled
implicitly by this command or whether the application must explicitly open and close the shutter
using the WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER
commands, or the WFS_CMD_CIM_PRESENT_MEDIA command. If bShutterControl is
FALSE then this command does not operate the shutter in any way, the application is responsible
for all shutter control. If bShutterControl is TRUE this command opens the shutter at the start of
the command and closes it once bills are inserted.

The bPresentControl field of the WFSCIMPOSCAPS structure returned from the
WFS_INF_CIM_POSITION_CAPABILITIES query will determine whether or not it is necessary
to call the WFS_CMD_CIM_PRESENT_MEDIA command in order to move items to the output
position. If bPresentControl is TRUE then all items are moved immediately to the correct output
position for removal (a WFS_CMD_CIM_OPEN_SHUTTER command will be needed in the
case of explicit shutter control). If bPresentControl is FALSE then items are not returned
immediately and must be presented to the correct output position for removal using the
WFS_CMD_CIM_PRESENT_MEDIA command.

It is possible that a device may divide bill or coin accepting into a series of sub-operations under
hardware control. In this case a WFS_EXEE_CIM_SUBCASHIN event may be sent after each
sub-operation, if the hardware capabilities allow it.

It is also possible that a device may return refused notes in multiple subsequent bunches. In this
case, the WFS_CMD_CIM_CASH_IN command will not complete until the final bunch has been
presented and after the last WFS_SRVE_CIM_ITEMSPRESENTED event has been generated.

Mixed Media Mode: If the device is operating in Mixed Media mode
(WFSCIMSTATUS.wMixedMode == WFS_CIM_IPMMIXEDMEDIA) the Service Provider will
not perform any operation unless the WFS_CMD_IPM_MEDIA_IN command is called or has
already been called on the IPM interface.

Input Param None.

Output Param LPWFSCIMNOTENUMBERLIST lpNoteNumberList;

CWA 16374-15:2011 (E)

52

lpNoteNumberList
List of banknote numbers which have been identified and accepted during execution of this
command. Refused items are not included in this lpNoteNumberList field. If the whole input was
refused then this field will be NULL and one or more WFS_EXEE_CIM_INPUTREFUSE events
will be generated. If only part of the input was refused then this field will contain the banknote
numbers of the accepted items and one or more WFS_EXEE_CIM_INPUTREFUSE events will
be generated. For a description of the WFSCIMNOTENUMBERLIST structure see the
WFS_INF_CIM_CASH_UNIT_INFO command.

The lpNoteNumberList field contains all notes accepted, if a note handling standard is supported
then this includes any level 2 or level 3 notes found during the cash-in operation.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a cash unit. A

WFS_EXEE_CIM_CASHUNITERROR
event will be sent with the details.

WFS_ERR_CIM_TOOMANYITEMS There were too many items inserted
previously. The cash-in stacker is full at the
beginning of this command.

WFS_ERR_CIM_NOITEMS There were no items to cash-in.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.
WFS_ERR_CIM_SHUTTERNOTCLOSED Shutter failed to close. In the case of explicit

shutter control the application should close
the shutter first.

WFS_ERR_CIM_NOCASHINACTIVE There is no cash-in transaction active.
WFS_ERR_CIM_POSITION_NOT_EMPTY The output position is not empty so a cash-in

is not possible.
WFS_ERR_CIM_SAFEDOOROPEN The safe door is open. This device requires

the safe door to be closed in order to perform
a WFS_CMD_CIM_CASH_IN command.

WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED
Foreign items have been detected inside the
input position.

WFS_ERR_CIM_SHUTTERNOTOPEN Shutter failed to open.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a cash unit.
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected.
WFS_EXEE_CIM_INPUTREFUSE A part or all of the amount of the cash-in

order was refused.
WFS_EXEE_CIM_NOTEERROR An item detection error occurred.
WFS_EXEE_CIM_SUBCASHIN A cash-in sub-operation has completed. If

the cash-in operation has been divided up
into a series of sub-operations under
hardware control this event is generated each
time one of the sub-cash-in operations
completes successfully. It may be used for
progress reporting.

WFS_SRVE_CIM_ITEMSINSERTED Items have been inserted into the cash-in
position by the user.

WFS_SRVE_CIM_ITEMSTAKEN The items have been removed by the user.
This event is only generated if the
bItemsTakenSensor field returned in the
capabilities information is TRUE.

WFS_SRVE_CIM_ITEMSPRESENTED Items have been presented to the user to be
taken.

WFS_EXEE_CIM_INFO_AVAILABLE Information is available for items detected
during the cash processing operation.

CWA 16374-15:2011 (E)

53

WFS_EXEE_CIM_INSERTITEMS Device is ready to accept items from the
user.

WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of
the cash units.

Comments None.

CWA 16374-15:2011 (E)

54

6.3 WFS_CMD_CIM_CASH_IN_END

Description This command ends a cash-in transaction. If cash items are on the stacker as a result of a
WFS_CMD_CIM_CASH_IN command these items are moved to the appropriate cash units.

The cash-in transaction is ended even if this command does not complete successfully.

Mixed Media Mode: If the device is operating in Mixed Media mode
(WFSCIMSTATUS.wMixedMode == WFS_CIM_IPMMIXEDMEDIA) non-cash items, e.g.
checks may be moved to an output position or media bin specified by the IPM interface.
Additionally, the Service Provider will not perform any operation unless the
WFS_CMD_IPM_MEDIA_IN_END command is called or has already been called on the IPM.
Alternatively, if WFSCIMCAPS.bMixedDepositAndRollback is TRUE, then the
WFS_CMD_IPM_MEDIA_IN_ROLLBACK command could be used instead of the
WFS_CMD_IPM_MEDIA_IN_END command in order to deposit the bills and return the checks.

Where IPM items may be presented the bPresentControl field of the WFSCIMPOSCAPS
structure returned from the WFS_INF_CIM_POSITION_CAPABILITIES query will determine
whether or not it is necessary to call the WFS_CMD_CIM_PRESENT_MEDIA command in
order to move items to the output position. If bPresentControl is TRUE then all items are moved
immediately to the correct output position for removal. If bPresentControl is FALSE then items
are not returned immediately and must be presented to the correct output position for removal
using the WFS_CMD_CIM_PRESENT_MEDIA command.

Input Param None.

Output Param LPWFSCIMCASHINFO lpCashInfo;

lpCashInfo
List of cash units that have taken cash items and the type of cash items they have taken during the
current transaction. For a description of the WFSCIMCASHINFO structure see the definition of
the WFS_INF_CIM_CASH_UNIT_INFO command. The structure returned only contains data
related to the current transaction, e.g. ulCount defines the number of banknotes or coins in the
cash unit for this transaction.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a cash unit. A

WFS_EXEE_CIM_CASHUNITERROR
event will be sent with the details.

WFS_ERR_CIM_NOITEMS There were no items to cash-in.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.
WFS_ERR_CIM_NOCASHINACTIVE There is no cash-in transaction active.
WFS_ERR_CIM_POSITION_NOT_EMPTY The input or output position is not empty.
WFS_ERR_CIM_SAFEDOOROPEN The safe door is open. This device requires

the safe door to be closed in order to perform
a WFS_CMD_CIM_CASH_IN_END
command.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of

the cash units.
WFS_SRVE_CIM_CASHUNITINFOCHANGED

A cash unit was changed.
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with the cash unit.
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected

during this operation.
WFS_EXEE_CIM_INFO_AVAILABLE Information is available for items detected

during the cash processing operation.
WFS_EXEE_CIM_NOTEERROR An item detection error occurred.

CWA 16374-15:2011 (E)

55

WFS_SRVE_CIM_ITEMSTAKEN The items have been removed by the user.
This event is only generated during a Mixed
Media transaction where the IPM items are
presented and taken and the
WFSCIMCAPS.bItemsTakenSensor field is
TRUE.

WFS_SRVE_CIM_ITEMSPRESENTED Items have been presented to the user to be
taken. This event is only generated during a
Mixed Media transaction where the IPM
items are presented.

WFS_SRVE_CIM_COUNTS_CHANGED In Mixed Media mode, counters can be
changed by the command
WFS_CDM_IPM_MEDIA_IN_END.

Comments In the special case where a note handling standard is supported and all the items inserted by the
customer are classified as level 2 and/or level 3 items and the Service Provider is configured to
automatically retain these item types then the WFS_CMD_CIM_CASH_IN_END command will
complete with WFS_SUCCESS even if the hardware may have already moved the level 2 and/or
level 3 items to their respective cash units on the WFS_CMD_CIM_CASH_IN command and
there are no items on escrow at the start of the WFS_CMD_CIM_CASH_IN_END command.
This allows the location of the notes retained to be reported in the output parameter. If no items
are available for cash-in for any other reason then the WFS_ERR_CIM_NOITEMS error code is
returned.

CWA 16374-15:2011 (E)

56

6.4 WFS_CMD_CIM_CASH_IN_ROLLBACK

Description This command is used to roll back a cash-in transaction. It causes all the cash items cashed in
since the last WFS_CMD_CIM_CASH_IN_START command to be returned to the customer.

This command ends the current cash-in transaction. The cash-in transaction is ended even if this
command does not complete successfully.

The bShutterControl field of the WFSCIMCAPS structure returned from the
WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled
implicitly by this command or whether the application must explicitly control the shutter using the
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands, or
WFS_CMD_CIM_PRESENT_MEDIA command. If bShutterControl is FALSE then this
command does not operate the shutter in any way, the application is responsible for all shutter
control. If bShutterControl is TRUE then this command opens the shutter and it is closed when all
items are removed.

The bPresentControl field of the WFSCIMPOSCAPS structure returned from the
WFS_INF_CIM_POSITION_CAPABILITIES query will determine whether or not it is necessary
to call the WFS_CMD_CIM_PRESENT_MEDIA command in order to move items to the output
position. If bPresentControl is TRUE then all items are moved immediately to the correct output
position for removal (a WFS_CMD_CIM_OPEN_SHUTTER command will be needed in the
case of explicit shutter control). If bPresentControl is FALSE then items are not returned
immediately and must be presented to the correct output position for removal using the
WFS_CMD_CIM_PRESENT_MEDIA command.

Mixed Media Mode: If the device is operating in Mixed Media mode
(WFSCIMSTATUS.wMixedMode == WFS_CIM_IPMMIXEDMEDIA) the Service Provider will
not perform any operation unless the WFS_CMD_IPM_MEDIA_IN_ROLLBACK command is
called or has already been called on the IPM interface. Alternatively, if the
WFSCIMCAPS.bMixedDepositAndRollback is TRUE , then the
WFS_CMD_IPM_MEDIA_IN_END command could be used instead of the
WFS_CMD_IPM_MEDIA_IN_ROLLBACK command in order to deposit the checks and return
the bills.

Input Param None.

Output Param NULL will be returned unless there were level 2 or level 3 notes inserted in the cash-in
transaction that are not returned to the customer because a note handling standard is supported.

LPWFSCIMCASHINFO lpCashInfo;

lpCashInfo
List of cash units that have taken banknotes and the type of banknotes they have taken. For a
description of the WFSCIMCASHINFO structure see the definition of the
WFS_INF_CIM_CASH_UNIT_INFO command. The structure returned only contains data
related to the current transaction, e.g. ulCount defines the number of notes in the cash unit for this
transaction.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a cash unit. A

WFS_EXEE_CIM_CASHUNITERROR
event will be sent with the details.

WFS_ERR_CIM_SHUTTERNOTOPEN Shutter failed to open. In the case of explicit
shutter control the application may have
failed to open the shutter before issuing the
command.

WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in the exchange state.
WFS_ERR_CIM_NOCASHINACTIVE There is no current cash-in transaction.
WFS_ERR_CIM_POSITION_NOT_EMPTY The input or output position is not empty.
WFS_ERR_CIM_NOITEMS There were no items to rollback.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a

CWA 16374-15:2011 (E)

57

result of this command:

Value Meaning
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a cash unit.
WFS_SRVE_CIM_ITEMSTAKEN The items have been removed by the user.

This event is only generated if the
bItemsTakenSensor field returned in the
capabilities information is TRUE.

WFS_SRVE_CIM_ITEMSPRESENTED Items have been presented to the user to be
taken.

WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected
during this operation.

WFS_EXEE_CIM_INFO_AVAILABLE Information is available for items detected
during the cash processing operation.

WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of
the cash units.

WFS_SRVE_CIM_COUNTS_CHANGED In Mixed Media mode, counters can be
changed by
WFS_CDM_IPM_MEDIA_IN_END.

Comments In the special case where a note handling standard is supported and all the items inserted by the
customer are classified as level 2 and/or level 3 items and the Service Provider is configured to
automatically retain these item types then the WFS_CMD_CIM_CASH_IN_ROLLBACK
command will complete with WFS_SUCCESS even though no items are returned to the customer.
This allows the location of the notes retained to be reported in the output parameter. The
application can tell if items have been returned or not via the
WFS_SRVE_CIM_ITEMSPRESENTED event. This event will be generated before the command
completes when items are returned. This event will not be generated if no items are returned. If no
items are available to rollback for any other reason then the WFS_ERR_CIM_NOITEMS error
code is returned.

CWA 16374-15:2011 (E)

58

6.5 WFS_CMD_CIM_RETRACT

Description This command retracts items from an output position or internal areas within the CIM. Retracted
items will be moved to either a retract bin, a reject bin, cash-in/recycle cash units, the transport or
an intermediate stacker area. If items from internal areas within the CIM are preventing items at
an output position from being retracted then the items from the internal areas will be retracted
first. When the items are retracted from an output position the shutter is closed automatically,
even if the bShutterControl capability is set to FALSE.

This command terminates a running cash-in transaction. The cash-in transaction is terminated
even if this command does not complete successfully.

Mixed Media Mode: If the device is operating in Mixed Media mode
(WFSCIMSTATUS.wMixedMode == WFS_CIM_IPMMIXEDMEDIA) this command will not
perform any operation unless the WFS_CMD_IPM_RETRACT_MEDIA command is called or
has already been called on the IPM interface. Where the parameters for this command and the
corresponding WFS_CMD_IPM_RETRACT_MEDIA command conflict, for example the device
is physically unable to satisfy both commands, the WFS_CMD_CIM_RETRACT input
parameters will be used for all items.

Input Param LPWFSCIMRETRACT lpRetract;
typedef struct _wfs_cim_retract
 {
 WORD fwOutputPosition;
 USHORT usRetractArea;
 USHORT usIndex;
 } WFSCIMRETRACT, *LPWFSCIMRETRACT;

fwOutputPosition
Specifies the output position from which to retract the bills. The value is set to one of the
following values:

Value Meaning
WFS_CIM_POSNULL The default configuration information should

be used. This value is also used to retract
items from internal CIM locations.

WFS_CIM_POSOUTLEFT Retract items from the left output position.
WFS_CIM_POSOUTRIGHT Retract items from the right output position.
WFS_CIM_POSOUTCENTER Retract items from the center output

position.
WFS_CIM_POSOUTTOP Retract items from the top output position.
WFS_CIM_POSOUTBOTTOM Retract items from the bottom output

position.
WFS_CIM_POSOUTFRONT Retract items from the front output position.
WFS_CIM_POSOUTREAR Retract items from the rear output position.

usRetractArea
This value specifies the area to which the items are to be retracted. Possible values are:

Value Meaning
WFS_CIM_RA_RETRACT Retract the items to a retract cash unit.
WFS_CIM_RA_REJECT Retract the items to a reject cash unit.
WFS_CIM_RA_TRANSPORT Retract the items to the transport.
WFS_CIM_RA_STACKER Retract the items to the intermediate stacker

area.
WFS_CIM_RA_BILLCASSETTES Retract the items to item cassettes,

i.e. cash-in and recycle cash units.

CWA 16374-15:2011 (E)

59

usIndex
If usRetractArea is set to WFS_CIM_RA_RETRACT this field defines the position inside the
retract cash units into which the cash is to be retracted. usIndex starts with a value of one (1) for
the first retract position and increments by one for each subsequent position. If there are several
logical retract cash units (of type WFS_CIM_TYPERETRACTCASSETTE in command
WFS_INF_CIM_CASH_UNIT_INFO), usIndex would be incremented from the first position of
the first retract cash unit to the last position of the last retract cash unit defined in
WFSCIMCASHINFO. The maximum value of usIndex is the sum of the ulMaximum of each
retract cash unit. If usRetractArea is not set to WFS_CIM_RA_RETRACT the value of this field
is ignored.

Output Param LPWFSCIMCASHINFO lpCashInfo;

lpCashInfo
List of cash units that have taken banknotes and the type of banknotes they have taken (including
level 2 and level 3 notes if a note handling standard is supported and configured). This pointer can
be NULL if usRetractArea is set to WFS_CIM_RA_TRANSPORT or
WFS_CIM_RA_STACKER. For a description of the WFSCIMCASHINFO structure see the
definition of the WFS_INF_CIM_CASH_UNIT_INFO command. The structure returned only
contains data related to the current transaction, e.g. ulCount defines the number of notes in the
cash unit for this transaction. Note that usNoteID in the NOTENUMBERLIST will be set to zero
for level 1 notes retracted.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_CASHUNITERROR A retract bin caused a problem. A

WFS_EXECUTE_EVENT with an id of
WFS_EXEE_CIM_CASHUNITERROR
will be posted with the details.

WFS_ERR_CIM_NOITEMS There were no items to retract.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.
WFS_ERR_CIM_SHUTTERNOTCLOSED The shutter failed to close.
WFS_ERR_CIM_ITEMSTAKEN Items were present at the output position at

the start of the operation, but were removed
before the operation was complete - some or
all of the items were not retracted.

WFS_ERR_CIM_INVALIDRETRACTPOSITION
The usIndex is not supported.

WFS_ERR_CIM_NOTRETRACTAREA The retract area specified in usRetractArea is
not supported.

WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED
Foreign items have been detected in the
input position.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has been reached in a

retract bin.
WFS_EXEE_CIM_CASHUNITERROR An error occurred while attempting to retract

to a retract bin.
WFS_EXEE_CIM_NOTEERROR An item detection error occurred.
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected

during this operation.
WFS_SRVE_CIM_ITEMSTAKEN The items have been removed by the user.

This event is only generated if the
bItemsTakenSensor field returned in the
capabilities information is TRUE.

WFS_EXEE_CIM_INFO_AVAILABLE Information is available for items detected
during the cash processing operation.

CWA 16374-15:2011 (E)

60

WFS_SRVE_CIM_CASHUNITINFOCHANGED
A cash unit was updated as a result of this
command.

Comments None.

CWA 16374-15:2011 (E)

61

6.6 WFS_CMD_CIM_OPEN_SHUTTER

Description This command opens the shutter.

Input Param LPWORD lpfwPosition;

lpfwPosition
Pointer to the position where the shutter is to be opened. If the application does not need to
specify the shutter, this field can be set to NULL or to WFS_CIM_POSNULL. Otherwise this
field should be set to one of the following values:

Value Meaning
WFS_CIM_POSNULL The default configuration information should

be used.
WFS_CIM_POSINLEFT Open the shutter of the left input position.
WFS_CIM_POSINRIGHT Open the shutter of the right input position.
WFS_CIM_POSINCENTER Open the shutter of the center input position.
WFS_CIM_POSINTOP Open the shutter of the top input position.
WFS_CIM_POSINBOTTOM Open the shutter of the bottom input

position.
WFS_CIM_POSINFRONT Open the shutter of the front input position.
WFS_CIM_POSINREAR Open the shutter of the rear input position.
WFS_CIM_POSOUTLEFT Open the shutter of the left output position.
WFS_CIM_POSOUTRIGHT Open the shutter of the right output position.
WFS_CIM_POSOUTCENTER Open the shutter of the center output

position.
WFS_CIM_POSOUTTOP Open the shutter of the top output position.
WFS_CIM_POSOUTBOTTOM Open the shutter of the bottom output

position.
WFS_CIM_POSOUTFRONT Open the shutter of the front output position.
WFS_CIM_POSOUTREAR Open the shutter of the rear output position.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CIM_SHUTTERNOTOPEN Shutter failed to open.
WFS_ERR_CIM_SHUTTEROPEN Shutter was already open.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.
WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED

Foreign items have been detected in the
input position.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_SRVE_CIM_ITEMSTAKEN The items have been removed by the user.

This event is only generated if the
bItemsTakenSensor field returned in the
capabilities information is TRUE.

WFS_SRVE_CIM_ITEMSINSERTED Items have been inserted by the user.

Comments None.

CWA 16374-15:2011 (E)

62

6.7 WFS_CMD_CIM_CLOSE_SHUTTER

Description This command closes the shutter.

Input Param LPWORD lpfwPosition;

lpfwPosition
Pointer to the position where the shutter is to be closed. If the application does not need to specify
the shutter, this field can be set to NULL or to WFS_CIM_POSNULL. Otherwise this field
should be set to one of the following values:

Value Meaning
WFS_CIM_POSNULL The default configuration information should

be used.
WFS_CIM_POSINLEFT Close the shutter of the left input position.
WFS_CIM_POSINRIGHT Close the shutter of the right input position.
WFS_CIM_POSINCENTER Close the shutter of the center input position.
WFS_CIM_POSINTOP Close the shutter of the top input position.
WFS_CIM_POSINBOTTOM Close the shutter of the bottom input

position.
WFS_CIM_POSINFRONT Close the shutter of the front input position.
WFS_CIM_POSINREAR Close the shutter of the rear input position.
WFS_CIM_POSOUTLEFT Close the shutter of the left output position.
WFS_CIM_POSOUTRIGHT Close the shutter of the right output position.
WFS_CIM_POSOUTCENTER Close the shutter of the center output

position.
WFS_CIM_POSOUTTOP Close the shutter of the top output position.
WFS_CIM_POSOUTBOTTOM Close the shutter of the bottom output

position.
WFS_CIM_POSOUTFRONT Close the shutter of the front output position.
WFS_CIM_POSOUTREAR Close the shutter of the rear output position.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CIM_SHUTTERCLOSED Shutter was already closed.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.
WFS_ERR_CIM_SHUTTERNOTCLOSED Shutter failed to close.
WFS_ERR_CIM_TOOMANYITEMS There were too many items inserted for the

shutter to close.
WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED

Foreign items have been detected in the
input position. The shutter is open.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16374-15:2011 (E)

63

6.8 WFS_CMD_CIM_SET_TELLER_INFO

Description This command allows the application to initialize counts for each currency assigned to the teller.
The values set by this command are persistent. This command only applies to Teller CIMs.

Input Param LPWFSCIMTELLERUPDATE lpTellerUpdate;
typedef struct _wfs_cim_teller_update
 {
 USHORT usAction;
 LPWFSCIMTELLERDETAILS lpTellerDetails;
 } WFSCIMTELLERUPDATE, *LPWFSCIMTELLERUPDATE;

usAction
The action to be performed specified as one of the following values:

Value Meaning
WFS_CIM_CREATE_TELLER A teller is to be added.
WFS_CIM_MODIFY_TELLER Information about an existing teller is to be

modified.
WFS_CIM_DELETE_TELLER A teller is to be removed.

lpTellerDetails
For a specification of the structure WFSCIMTELLERINFO please refer to the
WFS_INF_CIM_TELLER_INFO command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_INVALIDCURRENCY The specified currency is not currently

available.
WFS_ERR_CIM_INVALIDTELLERID The teller ID is invalid.
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CIM_EXCHANGEACTIVE The target teller is currently in the middle of

an exchange operation.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_SRVE_CIM_TELLERINFOCHANGED Teller information has been created,

modified or deleted.

Comments None.

CWA 16374-15:2011 (E)

64

6.9 WFS_CMD_CIM_SET_CASH_UNIT_INFO

Description This command is used to adjust information about the status and contents of the cash units present
in the CIM.

This command generates the service event WFS_SRVE_CIM_CASHUNITINFOCHANGED to
inform applications that cash unit information has been changed.

This command can only be used to change software counters, thresholds and the application lock.
All other fields in the input structure will be ignored.

The following fields of the WFSCIMCASHIN structure may be updated by this command:

ulCount
ulCashInCount
ulMaximum
bAppLock
lpNoteNumberList (contents must be consistent with ulCount)
ulInitialCount
ulDispensedCount
ulPresentedCount
ulRetractedCount
ulRejectCount
ulMinimum

As may the following fields of the WFSCIMPHCU structure:

ulCashInCount
ulCount
ulInitialCount
ulDispensedCount
ulPresentedCount
ulRetractedCount
ulRejectCount

Any other changes must be performed via an exchange operation.

The lppPhysical counts must be consistent with the logical cash unit counts. The Service Provider
controls whether the logical counts are maintained separately or are based on the sum of the
physical counts.

If the fields ulCount and ulCashInCount of lppPhysical are set to zero by this command, the
application is indicating that it does not wish counts to be maintained for the physical cash units.
Counts on the logical cash units will still be maintained and can be used by the application. If the
physical counts are set by this command then the logical count will be the sum of the physical
counts and any value sent as a logical count will be ignored.

Input Param LPWFSCIMCASHINFO lpCUInfo;

The LPWFSCIMCASHINFO structure is specified in the documentation of the
WFS_INF_CIM_CASH_UNIT_INFO command. All cash units must be included not just the
cash units whose values are to be changed.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_INVALIDCASHUNIT Invalid cash unit.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a cash unit. A

WFS_EXEE_CIM_CASHUNITERROR event
will be posted with the details.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

CWA 16374-15:2011 (E)

65

Value Meaning
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has been reached in

one of the cash units.
WFS_SRVE_CIM_CASHUNITINFOCHANGED

A cash unit was updated as a result of this
command.

WFS_EXEE_CIM_CASHUNITERROR An error occurred while accessing a cash unit.

Comments None.

CWA 16374-15:2011 (E)

66

6.10 WFS_CMD_CIM_START_EXCHANGE

Description This command puts the CIM in an exchange state, i.e. a state in which cash units can be emptied,
replenished, removed or replaced. Other than the updates which can be made via the
WFS_CMD_CIM_SET_CASH_UNIT_INFO command all changes to a cash unit must take place
while the cash unit is in an exchange state.

The command returns current cash unit information in the form described in the documentation of
the WFS_INF_CIM_CASH_UNIT_INFO command. This command will also initiate any
physical processes which may be necessary to make the cash units accessible. Before using this
command an application should first have obtained exclusive control of the CIM.

This command may return WFS_SUCCESS even if WFS_EXEE_CIM CASHUNITERROR
events are generated. If this command returns WFS_SUCCESS or
WFS_ERR_CIM_EXCHANGEACTIVE the CIM is in an exchange state.

While in an exchange state the CIM will process all WFS requests, excluding
WFS[Async]Execute commands other than WFS_CMD_CIM_END_EXCHANGE and
WFS_CMD_CIM_RESET.

Any other WFS[Async]Execute commands will result in the error
WFS_ERR_CIM_EXCHANGEACTIVE being generated.

If an error is returned by this command, the WFS_INF_CIM_CASH_UNIT_INFO command
should be used to determine the cash unit information.

If the CIM is part of a compound device together with a CDM (i.e. a cash recycler), exchange
operations can either be performed separately on each interface to the compound device, or the
entire exchange operation can be done through the CIM interface.

Exchange via CDM and CIM interfaces

If the exchange is performed separately via the CDM and CIM interfaces then these operations
cannot be performed simultaneously. An exchange state must therefore be initiated on each
interface in the following sequence:

CDM

 (Lock)

 WFS_CMD_CDM_START_EXCHANGE

…exchange action…

 WFS_CMD_CDM_END_EXCHANGE

 (Unlock)

CIM

 (Lock)

 WFS_CMD_CIM_START_EXCHANGE

 …exchange action…

 WFS_CMD_CIM_END_EXCHANGE

 (Unlock)

In the case of a cash recycler, the cash-in cash unit counts are set via the CIM interface and the
cash-out cash unit counts are set via the CDM interface. Recycle cash units can be set via either
interface. However, if the device has recycle cash units of multiple currencies and/or
denominations (or multiple note identifiers associated with the same denomination), then the CIM
interface should be used for exchange operations involving these cash units. Those fields which
are not common to both the CDM and CIM cash units are left unchanged when an exchange (or
WFS_CMD_CDM_SET_CASH_UNIT_INFO or WFS_CMD_CIM_SET_CASH_UNIT_INFO
command) is executed on the other interface. For example, if the CDM interface is used to set the
current count of notes in the cash unit the CIM lpNoteNumberList structure is not changed even if
the data becomes inconsistent.

Exchange via the CIM Interface

CWA 16374-15:2011 (E)

67

All cash unit info fields exposed through the CDM interface are also exposed through the CIM
interface, so the entire exchange operation for a recycling device can be achieved through the
CIM interface.

Input Param LPWFSCIMSTARTEX lpStartEx;
typedef struct _wfs_cim_start_ex
 {
 WORD fwExchangeType;
 USHORT usTellerID;
 USHORT usCount;
 LPUSHORT lpusCUNumList;
 LPWFSCIMOUTPUT lpOutput;
 } WFSCIMSTARTEX, *LPWFSCIMSTARTEX;

fwExchangeType
Specifies the type of the cash unit exchange operation. This field should be set to one of the
following values:

Value Meaning
WFS_CIM_EXBYHAND The cash units will be replenished manually

either by filling or emptying the cash unit by
hand or by replacing the cash unit.

WFS_CIM_EXTOCASSETTES Items will be moved from the replenishment
container to the bill cash units. Items will be
moved from the bill cash units to the
replenishment container. On a cash recycler,
the CDM interface should be used to move
items from a replenishment container.

WFS_CIM_CLEARRECYCLER Items will be moved from a recycle cash unit
to a cash unit or output position.

WFS_CIM_DEPOSITINTO Items will be moved from the deposit
entrance to the bill cash units.

usTellerID
Identification of teller. If the device is a Self-Service CIM this field is ignored.

usCount
Number of cash units to be exchanged. This is also the size of the array contained in the
lpusCUNumList field.

lpusCUNumList
Pointer to an array of unsigned shorts containing the logical numbers of the cash units to be
exchanged.

lpOutput
This field is used when the exchange type is WFS_CIM_CLEARRECYCLER, i.e. a recycle cash
unit is to be emptied.

typedef struct _wfs_cim_output
 {
 USHORT usLogicalNumber;
 WORD fwPosition;
 USHORT usNumber;
 } WFSCIMOUTPUT, *LPWFSCIMOUTPUT;

usLogicalNumber
Logical number of recycle cash unit be emptied.

fwPosition
Determines to which position the cash should be moved as a combination of the following
flags:

Value Meaning
WFS_CIM_POSNULL Move items to a cash unit. If no cash unit

is specified in usNumber, use the default
output position.

WFS_CIM_POSOUTLEFT Move items to the left output position.
WFS_CIM_POSOUTRIGHT Move items to the right output position.

CWA 16374-15:2011 (E)

68

WFS_CIM_POSOUTCENTER Move items to the center output position.
WFS_CIM_POSOUTTOP Move items to the top output position.
WFS_CIM_POSOUTBOTTOM Move items to the bottom output

position.
WFS_CIM_POSOUTFRONT Move items to the front output position.
WFS_CIM_POSOUTREAR Move items to the rear output position.

usNumber
Logical number of the cash unit the items are to be moved to.

Output Param LPWFSCIMCASHINFO lpCUInfo;

The WFSCIMCASHINFO structure is specified in the documentation of the
WFS_INF_CIM_CASH_UNIT_INFO command. Information on all the CIM cash units will be
returned.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_INVALIDTELLERID Invalid teller ID. This error will never be

generated by a Self-Service CIM.
WFS_ERR_CIM_CASHUNITERROR An error occurred with a cash unit while

performing the exchange operation. A
WFS_EXEE_CIM_CASHUNITERROR
event will be sent with the details.

WFS_ERR_CIM_TOOMANYITEMS This error is generated if the contents of the
recycle cash unit can not be completely
emptied to the output position. The
maximum possible number of items is
moved to the output position.

WFS_ERR_CIM_EXCHANGEACTIVE The CIM is already in an exchange state.
WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_CIM_CASHUNITERROR A cash unit caused an error.
WFS_EXEE_CIM_NOTEERROR An item detection error occurred.
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of

the cash units. This event is not generated for
recycle cash units.

WFS_SRVE_CIM_CASHUNITINFOCHANGED
A cash unit was changed.

Comments None.

CWA 16374-15:2011 (E)

69

6.11 WFS_CMD_CIM_END_EXCHANGE

Description This command will end the exchange state. If any physical action took place as a result of the
WFS_CMD_CIM_START_EXCHANGE command then this command will cause the cash units
to be returned to their normal physical state. Any necessary device testing will also be initiated.
The application can also use this command to update cash unit information in the form described
in the documentation of the WFS_INF_CIM_CASH_UNIT_INFO command.

The input parameters to this command may be ignored if the Service Provider can obtain cash unit
information from self-configuring cash units.

The lppPhysical counts must be consistent with the logical cash unit counts. The Service Provider
controls whether the logical counts are maintained separately or are based on the sum of the
physical counts.

If the fields ulCount, and ulCashInCount of lppPhysical are set to zero by this command, the
application is indicating that it does not wish counts to be maintained for the physical cash units.
Counts on the logical cash units will still be maintained and can be used by the application. If the
physical counts are set by this command then the logical count will be the sum of the physical
counts and any value sent as a logical count will be ignored.

If an error occurs during the execution of this command, then the application must issue a
WFS_INF_CIM_CASH_UNIT_INFO to determine the cash unit information.

A WFS_EXEE_CIM_CASHUNITERROR event will be sent for any logical cash unit which
cannot be successfully updated. If no cash units could be updated then a
WFS_ERR_CIM_CASHUNITERROR code will be returned and
WFS_EXEE_CIM_CASHUNITERROR events generated for every logical cash unit that could
not be updated.

Even if this command does not return WFS_SUCCESS the exchange state has ended.

Input Param LPWFSCIMCASHINFO lpCUInfo;

The LPWFSCIMCASHINFO structure is specified in the documentation for the
WFS_INF_CIM_CASH_UNIT_INFO command. This pointer can be NULL, if the cash unit
information has not changed. Otherwise the parameter must contain the complete list of cash unit
structures not just the ones that have changed.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_CASHUNITERROR A cash unit problem occurred that meant no

cash units could be updated. One or more
WFS_EXEE_CIM_CASHUNITERROR
events will be sent with the details.

WFS_ERR_CIM_NOEXCHANGEACTIVE There is no exchange active.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has been reached in

one of the cash units.
WFS_SRVE_CIM_CASHUNITINFOCHANGED

A cash unit was changed.
WFS_EXEE_CIM_CASHUNITERROR A cash unit caused an error.

Comments None.

CWA 16374-15:2011 (E)

70

6.12 WFS_CMD_CIM_OPEN_SAFE_DOOR

Description This command unlocks the safe door or starts the time delay count down prior to unlocking the
safe door, if the device supports it. The command completes when the door is unlocked or the
timer has started.

Input Param None.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16374-15:2011 (E)

71

6.13 WFS_CMD_CIM_RESET

Description This command is used by the application to perform a hardware reset which will attempt to return
the CIM device to a known good state. This command does not over-ride a lock obtained on
another application or service handle.

If a cash-in transaction is active, this command will end it (even if this command does not
complete successfully). If an exchange state is active then this command will end the exchange
state (even if this command does not complete successfully).

Persistent values, such as counts and configuration information are not cleared by this command.

The device will attempt to move any items found anywhere within the device to the position
specified within the lpResetIn parameter. This may not always be possible because of hardware
problems.

If items are found inside the device one or more WFS_SRVE_CIM_MEDIADETECTED events
will be generated to inform the application where the items have actually been moved to.

The bShutterControl field of the WFSCIMCAPS structure returned from the
WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled
implicitly by this command or whether the application must explicitly control the shutter using the
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands, or
the WFS_CMD_CIM_PRESENT_MEDIA command. If bShutterControl is FALSE then this
command does not operate the shutter in any way, the application is responsible for all shutter
control. If bShutterControl is TRUE then this command operates the shutter as necessary so that
the shutter is closed after the command completes successfully and any items returned to the
customer have been removed.

The bPresentControl field of the WFSCIMPOSCAPS structure returned from the
WFS_INF_CIM_POSITION_CAPABILITIES query will determine whether or not it is necessary
to call the WFS_CMD_CIM_PRESENT_MEDIA command in order to move items to the output
position. If bPresentControl is TRUE then all items are moved immediately to the correct output
position for removal (a WFS_CMD_CIM_OPEN_SHUTTER command will be needed in the
case of explicit shutter control). If bPresentControl is FALSE then items are not returned
immediately and must be presented to the correct output position for removal using the
WFS_CMD_CIM_PRESENT_MEDIA command.

Mixed Media Mode: The value of WFSCIMSTATUS.wMixedMode is not changed by this
command. Where the items are to be moved to a cash unit, the cash unit must support an
fwItemType of WFS_CIM_CITYPIPM.

Input Param If the application does not wish to specify a cash unit or position it can set lpResetIn to NULL. In
this case the Service Provider will determine where to move any items found.

LPWFSCIMITEMPOSITION lpResetIn;
typedef struct _wfs_cim_itemposition
 {
 USHORT usNumber;
 LPWFSCIMRETRACT lpRetractArea;
 WORD fwOutputPosition;
 } WFSCIMITEMPOSITION, *LPWFSCIMITEMPOSITION;

usNumber
In the case of a single cash unit destination this value specifies the cash unit to be used for the
storage of any items found, i.e. when items are to be moved to a reject or retract cash unit. In all
other cases this value must be zero, i.e. when items are to be moved to item cassettes, the
transport, the stacker or an output position.

lpRetractArea
This field is used if items are to be moved to the stacker, the transport, a retract cassette or to item
cassettes. If items are to be moved to a reject cash unit or to an output position then this field must
be NULL.

CWA 16374-15:2011 (E)

72

typedef struct _wfs_cim_retract
 {
 WORD fwOutputPosition;
 USHORT usRetractArea;
 USHORT usIndex;
 } WFSCIMRETRACT, *LPWFSCIMRETRACT;

fwOutputPosition
This value will be ignored.

usRetractArea
This value specifies the area to which the items are to be moved to. Possible values are:

Value Meaning
WFS_CIM_RA_RETRACT Items will be moved to a retract cash

unit. In the case where several cash units
of type WFS_CIM_TYPERETRACT-
CASSETTE exist the usNumber field
will define which retract unit the items
will be moved to.

WFS_CIM_RA_TRANSPORT Items will be moved to the transport.
WFS_CIM_RA_STACKER Items will be moved to the intermediate

stacker area.
WFS_CIM_RA_BILLCASSETTES Items will be moved to item cassettes,

i.e. cash-in and recycle cash units.

usIndex
If usRetractArea is set to WFS_CIM_RA_RETRACT this field is the logical retract position
inside the container into which the cash is to be retracted. This logical number starts with a
value of one (1) for the first retract position and increments by one for each subsequent
position. If the container contains several logical retract cash units (of type
WFS_CIM_TYPERETRACTCASSETTE in command
WFS_INF_CIM_CASH_UNIT_INFO), usIndex would be incremented from the first position
of the first retract cash unit to the last position of the last retract cash unit defined in
WFSCIMCASHINFO. The maximum value of usIndex is the sum of the ulMaximum of each
retract cash unit. If usRetractArea is not set to WFS_CIM_RA_RETRACT the value of this
field is ignored.

fwOutputPosition
The output position to which items are to be moved. If the usNumber is non-zero or if
lpRetractArea indicates WFS_CIM_RA_BILLCASSETTES then this field must be zero. The
value is set to one of the following values:

Value Meaning
WFS_CIM_POSNULL Take the default configuration.
WFS_CIM_POSOUTLEFT Move items to the left output position.
WFS_CIM_POSOUTRIGHT Move items to the right output position.
WFS_CIM_POSOUTCENTER Move items to the center output position.
WFS_CIM_POSOUTTOP Move items to the top output position.
WFS_CIM_POSOUTBOTTOM Move items to the bottom output position.
WFS_CIM_POSOUTFRONT Move items to the front output position.
WFS_CIM_POSOUTREAR Move items to the rear output position.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1] the following can be generated by this
command:

Value Meaning
WFS_ERR_CIM_CASHUNITERROR A cash unit caused an error. A

WFS_EXEE_CIM_CASHUNITERROR
event will be sent with the details.

WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported.
WFS_ERR_CIM_INVALIDCASHUNIT The cash unit number specified is not valid.
WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED

Foreign items have been detected in the
input position.

CWA 16374-15:2011 (E)

73

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has been reached in

one of the cash units.
WFS_EXEE_CIM_CASHUNITERROR A cash unit caused an error.
WFS_SRVE_CIM_MEDIADETECTED Media was detected during the reset.
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected

during this operation.
WFS_SRVE_CIM_ITEMSTAKEN The items have been removed by the user.

This event is only generated if the
bItemsTakenSensor field returned in the
Capabilities information is TRUE.

WFS_EXEE_CIM_INFO_AVAILABLE Information is available for items detected
during the cash processing operation.

Comments None.

CWA 16374-15:2011 (E)

74

6.14 WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS

Description This command is used to alter the banknote types a cash-in unit or recycle unit can take.

The values set by this command are persistent.

Input Param LPWFSCIMCASHINTYPE *lppCashInType;

lppCashInType
Pointer to a NULL-terminated array of pointers to WFSCIMCASHINTYPE structures. Only the
cash units which are to be configured should be sent in this parameter:
typedef struct _wfs_cim_cash_in_type
 {
 USHORT usNumber;
 DWORD dwType;
 LPUSHORT lpusNoteIDs;
 } WFSCIMCASHINTYPE, *LPWFSCIMCASHINTYPE;

usNumber
Logical number of the cash unit.

dwType
Type of cash-in unit or recycle unit. Specified as a combination of the following flags:

Value Meaning
WFS_CIM_CITYPALL The cash-in unit accepts all fit banknote

types.
WFS_CIM_CITYPUNFIT The cash-in unit accepts all unfit banknotes.
WFS_CIM_CITYPINDIVIDUAL The cash-in unit or recycle unit accepts all

types of fit banknotes specified in the
following list.

WFS_CIM_CITYPLEVEL2 If a note handling standard is supported then
level 2 note types are stored in this cash-in
unit.

WFS_CIM_CITYPLEVEL3 If a note handling standard is supported then
level 3 note types are stored in this cash-in
unit.

WFS_CIM_CITYPIPM The cash-in unit can accept items on the IPM
interface.

See the definition of the WFS_INF_CIM_CASH_UNIT_INFO command for a detailed
description.

lpusNoteIDs
Pointer to a zero-terminated list of unsigned shorts which contains the note IDs of the banknotes
the cash-in cash unit or recycle unit can take. This field only applies if the dwType field has the
WFS_CIM_CITYPINDIVIDUAL flag set.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_INVALIDCASHUNIT Invalid cash unit. This error will also be

created if an invalid logical number of a cash
unit is given.

WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.
WFS_ERR_CIM_CASHUNITNOTEMPTY The hardware requires that the cash unit is

empty before allowing changes.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE_CIM_CASHUNITINFOCHANGED

A cash unit was changed.

CWA 16374-15:2011 (E)

75

Comments None.

CWA 16374-15:2011 (E)

76

6.15 WFS_CMD_CIM_CONFIGURE_NOTETYPES

Description This command is used to configure the note types the banknote reader will recognize during cash-
in. All note types the banknote reader has to recognize must be given in the input structure. If an
unknown note type is given the error code WFS_ERR_UNSUPP_DATA will be returned.

The values set by this command are persistent.

Input Param LPUSHORT lpusNoteIDs;

lpusNoteIDs
Pointer to a zero-terminated list of unsigned shorts which contains the note IDs of the banknotes
the banknote reader can accept.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.
WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active. This device

requires that no cash-in transaction is active
in order to perform the command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16374-15:2011 (E)

77

6.16 WFS_CMD_CIM_CREATE_P6_SIGNATURE

Description This command is used to create a reference signature (normally a level 3 note) that was checked
and regarded as a forgery. The reference can be compared with the available signatures of the
cash-in transactions to track back the customer.

When this command is executed, the CIM waits for a note to be inserted at the input position,
transports the note to the recognition module, creates the signature and then returns the note to the
output position.

The bShutterControl field of the WFSCIMCAPS structure returned from the
WFS_INF_CIM_CAPABILITIES query will determine whether the shutter is controlled
implicitly by this command or whether the application must explicitly control the shutter using the
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands, or
WFS_CMD_CIM_PRESENT_MEDIA command. If bShutterControl is FALSE then this
command does not operate the shutter in any way, the application is responsible for all shutter
control. If bShutterControl is TRUE then this command opens and closes the shutter at various
times during the command execution and the shutter is finally closed when all items are removed.

The bPresentControl field of the WFSCIMPOSCAPS structure returned from the
WFS_INF_CIM_POSITION_CAPABILITIES query will determine whether or not it is necessary
to call the WFS_CMD_CIM_PRESENT_MEDIA command in order to move items to the output
position. If bPresentControl is TRUE then all items are moved immediately to the correct output
position for removal (a WFS_CMD_CIM_OPEN_SHUTTER command will be needed in the
case of explicit shutter control). If bPresentControl is FALSE then items are not returned
immediately and must be presented to the correct output position for removal using the
WFS_CMD_CIM_PRESENT_MEDIA command.

On devices with implicit shutter control, the WFS_EXEE_CIM_INSERTITEMS event will be
generated when the device is ready to start accepting media.

The application may have to execute this command repeatedly to make sure that all possible
signatures are captured.

If a single note is entered and returned to the customer but cannot be processed fully (e.g. no
recognition software in the recognition module, the note is not recognized, etc) then a
WFS_EXEE_CIM_INPUTREFUSE event will be sent and the command will complete with
WFS_SUCCESS. In this case, the output parameters will be set as follows, usNoteId = zero,
ulLength = zero, dwOrientation = WFS_CIM_ORUNKNOWN and lpSignature = NULL.

Input Param None.

Output Param LPWFSCIMP6SIGNATURE lpP6Signature;
typedef struct _wfs_cim_P6_signature
 {
 USHORT usNoteId;
 ULONG ulLength;
 DWORD dwOrientation;
 LPVOID lpSignature;
 } WFSCIMP6SIGNATURE, *LPWFSCIMP6SIGNATURE;

usNoteId
Identification of note type.

ulLength
Length of the signature in bytes.

dwOrientation
Orientation of the entered banknote. Specified as one of the following flags:

CWA 16374-15:2011 (E)

78

Value Meaning
WFS_CIM_ORFRONTTOP If note is inserted wide side as the leading

edge, the note was inserted with the front
image facing up and the top edge of the note
was inserted first. If the note is inserted short
side as the leading edge, the note was
inserted with the front image face up and the
left edge was inserted first.

WFS_CIM_ORFRONTBOTTOM If note is inserted wide side as the leading
edge, the note was inserted with the front
image facing up and the bottom edge of the
note was inserted first. If the note is inserted
short side as the leading edge, the note was
inserted with the front image face up and the
right edge was inserted first.

WFS_CIM_ORBACKTOP If note is inserted wide side as the leading
edge, the note was inserted with the back
image facing up and the top edge of the note
was inserted first. If the note is inserted short
side as the leading edge, the note was
inserted with the back image face up and the
left edge was inserted first.

WFS_CIM_ORBACKBOTTOM If note is inserted wide side as the leading
edge, the note was inserted with the back
image facing up and the bottom edge of the
note was inserted first. If the note is inserted
short side as the leading edge, the note was
inserted with the back image face up and the
right edge was inserted first.

WFS_CIM_ORUNKNOWN The orientation for the inserted note can not
be determined.

WFS_CIM_ORNOTSUPPORTED The hardware is not capable to determine the
orientation.

lpSignature
Pointer to the returned signature.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_TOOMANYITEMS There was more than one banknote inserted

for creating a signature.
WFS_ERR_CIM_NOITEMS There was no banknote to create a signature.
WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.
WFS_ERR_CIM_POSITION_NOT_EMPTY The output position is not empty so a

banknote cannot be inserted.
WFS_ERR_CIM_SHUTTERNOTOPEN Shutter failed to open.
WFS_ERR_CIM_SHUTTERNOTCLOSED Shutter failed to close.
WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED

Foreign items have been detected in the
input position.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_CIM_INPUTREFUSE The inserted item was no banknote or the

note was not recognized.
WFS_SRVE_CIM_ITEMSINSERTED Items have been inserted into the cash-in

position by the user.
WFS_SRVE_CIM_ITEMSTAKEN Items returned to the user have been taken.

CWA 16374-15:2011 (E)

79

WFS_SRVE_CIM_ITEMSPRESENTED Items have been presented to the user to be
taken.

WFS_EXEE_CIM_NOTEERROR An item detection error occurred.
WFS_EXEE_CIM_INSERTITEMS Device is ready to accept items from the

user.
WFS_EXEE_CIM_INFO_AVAILABLE Information is available for items detected

during this operation.

Comments None.

CWA 16374-15:2011 (E)

80

6.17 WFS_CMD_CIM_SET_GUIDANCE_LIGHT

Description This command is used to set the status of the CIM guidance lights. This includes defining the
flash rate and the color. When an application tries to use a color that is not supported then the
Service Provider will return the generic error WFS_ERR_UNSUPP_DATA.

Input Param LPWFSCIMSETGUIDLIGHT lpSetGuidLight;
typedef struct _wfs_cim_set_guidlight
 {
 WORD wGuidLight;
 DWORD dwCommand;
 } WFSCIMSETGUIDLIGHT, *LPWFSCIMSETGUIDLIGHT;

wGuidLight
Specifies the index of the guidance light to set as one of the values defined within the capabilities
section.

dwCommand
Specifies the state of the guidance light indicator as WFS_CIM_GUIDANCE_OFF or a
combination of the following flags consisting of one type B, and optionally one type C. If no
value of type C is specified then the default color is used. The Service Provider determines which
color is used as the default color.

Value Meaning Type
WFS_CIM_GUIDANCE_OFF The light indicator is turned off. A
WFS_CIM_GUIDANCE_SLOW_FLASH The light indicator is set to flash B

slowly.
WFS_CIM_GUIDANCE_MEDIUM_FLASH The light indicator is set to flash B

medium frequency.
WFS_CIM_GUIDANCE_QUICK_FLASH The light indicator is set to flash B

quickly.
WFS_CIM_GUIDANCE_CONTINUOUS The light indicator is turned on B

continuously (steady).
WFS_CIM_GUIDANCE_RED The light indicator color is set C

to red.
WFS_CIM_GUIDANCE_GREEN The light indicator color is set C

to green.
WFS_CIM_GUIDANCE_YELLOW The light indicator color is set C

to yellow.
WFS_CIM_GUIDANCE_BLUE The light indicator color is set C

to blue.
WFS_CIM_GUIDANCE_CYAN The light indicator color is set C

to cyan.
WFS_CIM_GUIDANCE_MAGENTA The light indicator color is set C

to magenta.
WFS_CIM_GUIDANCE_WHITE The light indicator color is set C

to white.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_INVALID_PORT An attempt to set a guidance light to a new

value was invalid because the guidance light
does not exist.

Events Only the generic events defined in [Ref. 1] can be generated by this command:

Comments Guidance light support was added into the CIM primarily to support guidance lights for
workstations where more than one instance of a CIM is present. The original SIU guidance light
mechanism was not able to manage guidance lights for workstations with multiple CIMs. This
command can also be used to set the status of the CIM guidance lights when only one instance of
a CIM is present.

CWA 16374-15:2011 (E)

81

The slow and medium flash rates must not be greater than 2.0 Hz. It should be noted that in order
to comply with American Disabilities Act guidelines only a slow or medium flash rate must be
used.

CWA 16374-15:2011 (E)

82

6.18 WFS_CMD_CIM_CONFIGURE_NOTE_READER

Description This command is used to configure the currency description configuration data into the banknote
reader module. The format and location of the configuration data is vendor and/or hardware
dependent.

Input Param LPWFSCIMCONFIGURENOTEREADER lpConfigureNoteReader;
typedef struct _wfs_cim_configure_note_reader
 {
 BOOL bLoadAlways;
 } WFSCIMCONFIGURENOTEREADER, *LPWFSCIMCONFIGURENOTEREADER;

bLoadAlways
If set to TRUE, the Service Provider loads the currency description data into the note reader, even
if it is already loaded.

Output Param LPWFSCIMCONFIGURENOTEREADEROUT lpConfigureNoteReaderOut;
typedef struct _wfs_cim_configure_note_reader_out
 {
 BOOL bRebootNecessary;
 } WFSCIMCONFIGURENOTEREADEROUT, *LPWFSCIMCONFIGURENOTEREADEROUT;

bRebootNecessary
If set to TRUE, the machine needs a reboot before the note reader can be accessed again.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.
WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active.
WFS_ERR_CIM_LOADFAILED The load failed because the device is in a

state that will not allow the configuration
data to be loaded at this time, for example on
some devices there may be notes present in
the cash units when they should not be.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16374-15:2011 (E)

83

6.19 WFS_CMD_CIM_COMPARE_P6_SIGNATURE

Description This command is used to compare the signatures of a reference banknote with the available
signatures of the cash-in transactions.

The reference signatures are created by the WFS_CMD_CIM_CREATE_P6_SIGNATURE
command.

The transaction signatures are obtained through the WFS_INF_CIM_GET_P6_SIGNATURE
command.

The signatures (1 to 4) of the reference banknote are typically the signatures of the 4 orientations
of the banknote.

The WFS_CMD_CIM_COMPARE_P6_SIGNATURE command may return a single indication
or a list of indications to the matching signatures, each one associated to a confidence level factor.
If the Service Provider does not support the confidence level factor, it returns a single indication
to the best matching signature with the confidence level factor set to zero.

If the comparison completed with no matching signatures found then the command returns
WFS_SUCCESS with lppP6SignaturesIndex set to NULL and usCount set to zero.

This command must be used outside of the cash-in transactions and outside of exchange states.

Input Param LPWFSCIMP6COMPARESIGNATURE lpP6CompareSignature;
typedef struct _wfs_cim_P6_compare_signature
 {
 LPWFSCIMP6SIGNATURE *lppP6ReferenceSignatures;
 LPWFSCIMP6SIGNATURE *lppP6Signatures;
 } WFSCIMP6COMPARESIGNATURE, *LPWFSCIMP6COMPARESIGNATURE;

lppP6ReferenceSignatures
Pointer to a NULL-terminated array of pointers to WFSCIMP6SIGNATURE structures.

Each pointer points to the signature corresponding to one orientation of a single reference
banknote.

At least one orientation must be provided. If no orientations are provided (this pointer is NULL or
points to NULL) the command returns WFS_ERR_INVALID_DATA. For a description of the
WFSCIMP6SIGNATURE structure see the definition of the command
WFS_CMD_CIM_CREATE_P6_SIGNATURE.

lppP6Signatures
Pointer to a NULL-terminated array of pointers to WFSCIMP6SIGNATURE structures. Each
pointer points to a level 2/3 signature, from the cash-in transactions, to be compared with the
reference signatures in lppP6ReferenceSignature.

At least one signature must be provided. If there are no signatures provided (this pointer is NULL
or points to NULL) the command returns WFS_ERR_INVALID_DATA.

For a description of the WFSCIMP6SIGNATURE structure see the definition of the command
WFS_INF_CIM_GET_P6_SIGNATURE.

Output Param LPWFSCIMP6COMPARERESULT lpP6CompareResult;
typedef struct _wfs_cim_P6_compare_result
 {
 USHORT usCount;
 LPWFSCIMP6SIGNATURESINDEX *lppP6SignaturesIndex;
 } WFSCIMP6COMPARERESULT, *LPWFSCIMP6COMPARERESULT;

usCount
Number of WFSCIMP6SIGNATURESINDEX structures returned in lppP6SignaturesIndex.

lppP6SignaturesIndex
Pointer to a NULL-terminated array of pointers to WFSCIMP6SIGNATURESINDEX structures.
This pointer is NULL and usCount is zero when the compare operation completes with no match
found.

CWA 16374-15:2011 (E)

84

If there are matches found, lppP6SignaturesIndex contains the indexes of the matching signatures
from the input parameter lppP6Signatures.

If there is a match found but the Service Provider does not support the confidence level factor,
lppP6SignaturesIndex contains a single index with usConfidenceLevel set to zero.

typedef struct _wfs_cim_P6_signatures_index
 {
 USHORT usIndex;
 USHORT usConfidenceLevel;
 ULONG ulLength;
 LPVOID lpComparisonData;
 } WFSCIMP6SIGNATURESINDEX, *LPWFSCIMP6SIGNATURESINDEX;

usIndex
Specifies the index (zero to usNumOfSignatures-1) of the matching signature from the input
parameter lppP6Signatures.

usConfidenceLevel
Specifies the level of confidence for the match found. This value is in a scale 1 - 100, where
100 is the maximum confidence level. This value is zero if the Service Provider does not
support the confidence level factor.

ulLength
Length of the comparison data in bytes.

lpComparisonData
Pointer to vendor dependent comparison result data. This data may be used as justification for
the signature match or confidence level. This pointer is NULL if no additional comparison
data is returned.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in the exchange state.
WFS_ERR_CIM_INVALIDREFSIG At least one of the reference signatures is

invalid. The application should prompt the
operator to carefully retry the creation of the
reference signatures.

WFS_ERR_CIM_INVALIDTRNSIG At least one of the transaction signatures is
invalid.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments Due to the potential for signatures to be large, as well as the possibility that it may be necessary to
compare the reference signature with a large number of signatures, applications should be aware
of the amount of data passed as input to this command. In some cases, it may be necessary to
execute this command more than once, with subsets of the total signatures, and then afterward
compare the results from each execution.

CWA 16374-15:2011 (E)

85

6.20 WFS_CMD_CIM_POWER_SAVE_CONTROL

Description This command activates or deactivates the power saving mode.

If the Service Provider receives another execute command while in power saving mode, the
Service Provider automatically exits the power saving mode, and executes the requested
command. If the Service Provider receives an information command while in power saving mode,
the Service Provider will not exit the power saving mode.

Input Param LPWFSCIMPOWERSAVECONTROL lpPowerSaveControl;
typedef struct _wfs_cim_power_save_control
 {
 USHORT usMaxPowerSaveRecoveryTime;
 } WFSCIMPOWERSAVECONTROL, *LPWFSCIMPOWERSAVECONTROL;

usMaxPowerSaveRecoveryTime
Specifies the maximum number of seconds in which the device must be able to return to its
normal operating state when exiting power save mode. The device will be set to the highest
possible power save mode within this constraint. If usMaxPowerSaveRecoveryTime is set to zero
then the device will exit the power saving mode.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_POWERSAVETOOSHORT The power saving mode has not been

activated because the device is not able to
resume from the power saving mode within
the specified
usMaxPowerSaveRecoveryTime value.

WFS_ERR_CIM_POWERSAVEMEDIAPRESENT
The power saving mode has not been
activated because media is present inside the
device.

WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_SRVE _CIM_POWER_SAVE_CHANGE The power save recovery time has changed.

Comments None.

CWA 16374-15:2011 (E)

86

6.21 WFS_CMD_CIM_REPLENISH

Description This command replenishes cash units by moving items between cash units. Applications can use
this command to ensure that there is the optimum number of items in the cassettes by moving
items from a source cash unit to a target cash unit. This is especially applicable if a replenishment
cash unit is used for the replenishment and can help to minimize manual replenishment
operations.

The WFS_INF_CIM_REPLENISH_TARGET command can be used to determine what cash
units can be specified as target cash units for a given source cash unit. Any items which are
removed from the source cash unit that are not of the correct currency ID and value for the target
cash unit during execution of this command will be returned to the source cash unit.

The ulCount, ulCashInCount, ulDispensedCount and ulRejectCount returned with the
WFS_INF_CIM_CASH_UNIT_INFO command will be updated as part of the execution of this
command. Also for cash recyclers the ulCount, ulDispensedCount and ulRejectCount returned
with the WFS_INF_CDM_CASH_UNIT_INFO command will be updated as part of the
execution of this command.

If the command fails after some items have been moved, the command will complete with an
appropriate error code, and a WFS_EXEE_CIM_INCOMPLETEREPLENISH event will be sent.

Input Param LPWFSCIMREP lpReplenish;
typedef struct _wfs_cim_replenish
 {
 USHORT usNumberSource;
 LPWFSCIMREPTARGET *lppReplenishTargets;
 } WFSCIMREP, *LPWFSCIMREP;

usNumberSource
Index number of the logical cash unit from which items are to be removed. This is the index
number identifier defined in the usNumber field of the WFSCIMCASHIN structure of the output
data of the WFS_INF_CIM_CASH_UNIT_INFO command.

lppReplenishTargets
Pointer to a NULL-terminated array of pointers to WFSCIMREPTARGET structures. There must
be at least one array element:

typedef struct_wfs_cim_replenish_target
 {
 USHORT usNumberTarget
 ULONG ulNumberOfItemsToMove;
 BOOL bRemoveAll;
 } WFSCIMREPTARGET, *LPWFSCIMREPTARGET;

usNumberTarget
Index number of the logical cash unit to which items are to be moved. This is the index
number identifier defined in the usNumber field of the WFSCIMCASHIN structure of the
output data of the WFS_INF_CIM_CASH_UNIT_INFO command.

ulNumberOfItemsToMove
The number of items to be moved to the target cash unit. Any items which are removed from
the source cash unit that are not of the correct currency ID and value for the target cash unit
during execution of this command will be returned to the source cash unit. This field will be
ignored if the bRemoveAll parameter is set to TRUE.

bRemoveAll
Specifies if all items are to be moved to the target cash unit. Any items which are removed
from the source cash unit that are not of the correct currency ID and value for the target cash
unit during execution of this command will be returned to the source cash unit. If TRUE all
items in the source will be moved, regardless of the ulNumberOfItemsToMove field value. If
FALSE the number of items specified with ulNumberOfItemsToMove will be moved.

Output Param LPWFSCIMREPRES lpReplenishResult;

CWA 16374-15:2011 (E)

87

typedef struct _wfs_cim_replenish_result
 {
 ULONG ulNumberOfItemsRemoved;
 ULONG ulNumberOfItemsRejected;
 LPWFSCIMREPTARGETRES *lppReplenishTargetResults;
 } WFSCIMREPRES, *LPWFSCIMREPRES;

ulNumberOfItemsRemoved
Total number of items removed from the source cash unit including rejected items during
execution of this command.

ulNumberOfItemsRejected
Total number of items rejected during execution of this command.

lppReplenishTargetResults
Pointer to a NULL-terminated array of pointers to WFSCIMREPTARGETRES structures. In the
case where one note type has several releases and these are moved, or where items are moved
from a multi denomination cash unit to a multi denomination cash unit, each target can receive
several usNoteID note types. For example: If one single target was specified with the
lppReplenishTargets input structure, and this target received two different usNoteID note types,
then the lppReplenishTargetResults array will have two elements. Or if two targets were specified
and the first target received two different usNoteID note types and the second target received three
different usNoteID note types, then the lppReplenishTargetResults array will have five elements:

typedef struct _wfs_cim_replenish_target_result
 {
 USHORT usNumberTarget
 USHORT usNoteID;
 ULONG ulNumberOfItemsReceived;
 } WFSCIMREPTARGETRES, *LPWFSCIMREPTARGETRES;

usNumberTarget
Index number of the logical cash unit to which items have been moved. This is the index
number identifier defined in the usNumber field of the WFSCIMCASHIN structure of the
output data of the WFS_INF_CIM_CASH_UNIT_INFO command.

usNoteID
Identification of note type. The note ID represents the note identifiers reported by the
WFS_INF_CIM_BANKNOTE_TYPES command.

ulNumberOfItemsReceived
Total number of items received in this target cash unit of the usNoteID note type. A zero value
will be returned if this target cash unit did not receive any items of this note type, for example
due to a cash unit or transport jam.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_CASHUNITERROR A problem occurred with a cash unit. A

WFS_EXEE_CIM_CASHUNITERROR
event will be sent with the details. If
appropriate a
WFS_EXEE_CIM_INCOMPLETE-
REPLENISH event will also be sent.

WFS_ERR_CIM_INVALIDCASHUNIT The source or target cash unit specified is
invalid for this operation. The
WFS_INF_CIM_REPLENISH_TARGET
command can be used to determine which
source or target is valid.

WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

CWA 16374-15:2011 (E)

88

Value Meaning
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of

the cash units.
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a cash unit.
WFS_EXEE_CIM_NOTEERROR An item detection error has occurred.
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected

during this operation.
WFS_EXEE_CIM_INCOMPLETEREPLENISH

If this command fails with an error code (not
WFS_SUCCESS) but some items have been
moved, then the details will be reported with
this event. This event can only occur once
per command.

Comments None.

CWA 16374-15:2011 (E)

89

6.22 WFS_CMD_CIM_SET_CASH_IN_LIMIT

Description This command specifies the amount/number of items limitation for the current cash-in transaction.
This command can only be called once after the WFS_CMD_CIM_CASH_IN_START command
and before the first WFS_CMD_CIM_CASH_IN command, otherwise it will fail with the
WFS_ERR_SEQUENCE_ERROR error. Any command that completes the cash-in transaction
(i.e. WFS_CMD_CIM_CASH_IN_END, WFS_CMD_CIM_CASH_IN_ROLLBACK,
WFS_CMD_CIM_RETRACT and WFS_CMD_CIM_RESET commands) will clear the limit.

This limit is active until the end of the current cash-in transaction. The use of this command is
optional, however it needs to be called for each cash-in transaction that needs a limitation.

This command does not disable/enable the recognition of individual note types. The
WFS_CMD_CIM_CONFIGURE_NOTETYPES command must be used to refuse a certain note
type during cash-in transactions.

Input Param LPWFSCIMCASHINLIMIT lpCashInLimit;

Pointer to the WFSCIMCASHINLIMIT structure. This cash-in limit structure can be used to limit
the items that can be accepted during the cash-in operation. The limit set does not include
counterfeit or suspected counterfeit items which may be detected during such a cash-in operation.
If the lpCashInLimit field is set to a NULL pointer there is no specific amount/number of items
limit for the next cash-in operation. Note that the cash-in limit set by this command may itself be
limited by the physical cash-in limitation of the device.

If one or more limit conditions have been set by this command, the limit reached during the cash-
in operation will be reported in the lpusReason field of the WFS_EXEE_CIM_INPUTREFUSE
event.
typedefstruct _wfs_cim_cash_in_limit
 {
 ULONG ulTotalItemsLimit;
 LPWFSCIMAMOUNTLIMIT lpAmountLimit;
 } WFSCIMCASHINLIMIT, *LPWFSCIMCASHINLIMIT;

ulTotalItemsLimit
If set to a non-zero value, specifies a limit on the total number of items to be accepted during the
cash-in operation. If set to a zero value, this limitation will not be performed.

This limitation can only be used if WFS_CIM_LIMITBYTOTALITEMS is specified in the
fwCashInLimit field of the WFS_INF_CIM_CAPABILITIES command. If however this is
specified but not supported the WFS_ERR_UNSUPP_DATA error will be returned and no limit
will be set.

lpAmountLimit
Pointer to the WFSCIMAMOUNTLIMIT structure. If set to a NULL pointer this limitation will
not be performed. For CIM devices which can accept more than one currency this limit can only
be applied to one currency for each cash-in operation.

This limitation can only be used if WFS_CIM_LIMITBYAMOUNT is specified in the
fwCashInLimit field of the WFS_INF_CIM_CAPABILITIES command. If however this is
specified but not supported the WFS_ERR_UNSUPP_DATA error will be returned and no limit
will be set.

typedef struct _wfs_cim_amount_limit
 {
 CHAR cCurrencyID[3];
 ULONG ulAmount;
 } WFSCIMAMOUNTLIMIT, *LPWFSCIMAMOUNTLIMIT;

cCurrencyID
Currency identifier in ISO 4217 format [Ref. 2].

ulAmount
If set to a non-zero value, specifies a limit on the total amount of the cash-in operation. This
value is expressed in minimum dispense units (see section
WFS_INF_CIM_CURRENCY_EXP). If set to a zero value, this limitation will not be
performed.

CWA 16374-15:2011 (E)

90

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16374-15:2011 (E)

91

6.23 WFS_CMD_CIM_CASH_UNIT_COUNT
Description This command counts the items in the cash unit(s). If it is necessary to move items internally to

count them, the items should be returned to the cash unit from which they originated before
completion of the command. If items could not be moved back to the cash unit they originated
from and did not get rejected, the command will complete with an appropriate error.

During the execution of this command one WFS_SRVE_CIM_CASHUNITINFOCHANGED
event will be generated for each cash unit that has been counted successfully, or if the counts have
changed, even if the overall command fails.

After completion of this command the number of items rejected can be determined by calling the
WFS_INF_CIM_CASH_UNIT_INFO command and checking the value of the ulRejectCount
field within the WFSCIMCASHIN structure and WFSCIMPHCU substructures. The
ulRejectCount value is incremented by one for each item rejected during execution of this
command.

This command is designed to be used on CIM devices where the ulCount cannot be guaranteed to
be accurate and therefore may need to be automatically counted periodically. Upon successful
completion, for those cash units that have been counted, the ulCount field within the
WFSCIMCASHIN structure and its WFSCIMNOTENUMBERLIST and WFSCIMPHCU
substructures are accurately reported with the WFS_INF_CIM_CASH_UNIT_INFO command.

Input Param LPWFSCIMCOUNT lpCount;

If the fwCountActions WFS_CIM_COUNTINDIVIDUAL capability is supported, this structure
can provide data indicating which cash units are to be counted. If the fwCountActions
WFS_CIM_COUNTALL capability is supported, this pointer can be NULL, and all cash units
will be counted.
typedef struct _wfs_cim_count
 {
 USHORT usCount;
 LPUSHORT lpusCUNumList;
 } WFSCIMCOUNT, *LPWFSCIMCOUNT;

usCount
Number of individual logical cash units to be counted. This is also the size of the array contained
in the lpusCUNumList field.

lpusCUNumList
Pointer to an array of USHORT values containing the logical numbers of the individual cash units
to be counted. All physical cash units which the logical cash unit is composed of will be counted.
If an invalid logical number is contained in this list, the command will fail with a
WFS_ERR_CIM_CASHUNITERROR error.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_INVALIDCASHUNIT At least one of the logical cash units

specified is either invalid or does not support
being counted. No cash units have been
counted.

WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.
WFS_ERR_CIM_TOOMANYITEMSTOCOUNT

There were too many items. The required
internal position may have been of
insufficient size. All items should be
returned to the cash unit from which they
originated.

WFS_ERR_CIM_COUNTPOSNOTEMPTY A required internal position is not empty so a
cash unit count is not possible.

CWA 16374-15:2011 (E)

92

WFS_ERR_CIM_CASHUNITERROR A cash unit caused a problem. A
WFS_EXEE_CIM_CASHUNITERROR
event will be posted with the details.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_SRVE_CIM_CASHUNITINFOCHANGED

The counting of a cash unit has completed or
the counts have changed.

WFS_SRVE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of
the cash units.

WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a cash unit.
WFS_EXEE_CIM_NOTEERROR An item detection error has occurred.
WFS_EXEE_CIM_INPUT_P6 Level 2 and / or level 3 notes are detected

during this operation.

Comments None.

CWA 16374-15:2011 (E)

93

6.24 WFS_CMD_CIM_DEVICE_LOCK_CONTROL

Description This command can be used to lock or unlock a CIM device, it can also be used to lock or unlock
one or more cash units.

During normal device operation the device and cash units will be locked and removal will not be
possible. If supported the device or cash units can be unlocked, ready for removal. In this situation
the device will still remain online and cash-in or dispense operations will be possible, as long as
the device or cash units are not physically removed from their normal operating position.

If the lock action is specified and the device or cash units are already locked, or if the unlock
action is specified and the device or cash units are already unlocked then the action will complete
successfully.

Once a cash unit has been removed and reinserted it will then have a
WFS_CIM_STATCUMANIP status. This status can only be cleared by issuing a
WFS_CMD_CIM_START_EXCHANGE/WFS_CMD_CIM_END_EXCHANGE command
sequence.

The device and all cash units will also be locked implicitly as part of the execution of the
WFS_CMD_CIM_END_EXCHANGE or the WFS_CMD_CIM_RESET command.

Input Param LPWFSCIMDEVICELOCKCONTROL lpDeviceLockControl;
typedef struct _wfs_cim_device_lock_control
 {
 WORD wDeviceAction;
 WORD wCashUnitAction;
 LPWFSCIMUNITLOCKCONTROL *lppUnitLockControl;
 } WFSCIMDEVICELOCKCONTROL, *LPWFSCIMDEVICELOCKCONTROL;

wDeviceAction
Specifies to lock or unlock the CIM device in its normal operating position. Possible values are:

Value Meaning
WFS_CIM_LOCK Locks the CIM device so that it cannot be

removed from its normal operating position.
WFS_CIM_UNLOCK Unlocks the CIM device so that it can be

removed from its normal operating position.
WFS_CIM_NOLOCKACTION No lock/unlock action will be performed on

the CIM device.

wCashUnitAction
Specifies the type of lock/unlock action on physical cash units as one of the following values:

Value Meaning
WFS_CIM_LOCKALL Locks all physical cash units supported.
WFS_CIM_UNLOCKALL Unlocks all physical cash units supported.
WFS_CIM_LOCKINDIVIDUAL Locks/unlocks physical cash units

individually as specified in the
lppUnitLockControl parameter.

WFS_CIM_NOLOCKACTION No lock/unlock action will be performed on
cash units.

lppUnitLockControl
Pointer to a NULL-terminated array of pointers to WFSCIMUNITLOCKCONTROL structures;
only valid in the case where WFS_CIM_LOCKINDIVIDUAL is specified in the
wCashUnitAction field. Otherwise this field will be ignored. Each element specifies one cash unit
to be locked/unlocked:

typedef struct _wfs_cim_unit_lock_control
 {
 LPSTR lpPhysicalPositionName;
 WORD wUnitAction;
 } WFSCIMUNITLOCKCONTROL, *LPWFSCIMUNITLOCKCONTROL;

CWA 16374-15:2011 (E)

94

lpPhysicalPositionName
Specifies which physical cash unit is to be locked/unlocked. This name is the same as the
lpPhysicalPositionName in the WFSCIMPHCU structure. Only physical cash units reported
by the WFS_INF_CIM_DEVICELOCK_STATUS command can be specified.

wUnitAction
Specifies whether to lock or unlock the physical cash unit indicated in the
lpPhysicalPositionName parameter. Possible values are:

Value Meaning
WFS_CIM_LOCK Locks the specified cash unit so that it

cannot be removed from the CIM device.
WFS_CIM_UNLOCK Unlocks the specified cash unit so that it

can be removed from the CIM device.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_INVALIDCASHUNIT The cash unit type specified is invalid.
WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM service is in an exchange state.
WFS_ERR_CIM_DEVICELOCKFAILURE The device and/or the cash units specified

could not be locked/unlocked. (e.g. the lock
action could not be performed because the
cash unit specified to be locked had been
removed).

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a
result of this command:

Value Meaning
WFS_USRE_CIM_CASHUNITTHRESHOLD A threshold condition has occurred in one of

the cash units.
WFS_EXEE_CIM_CASHUNITERROR A problem occurred with a cash unit.

Comments The normal command sequence is as follows:

Step1: WFS_CMD_CIM_DEVICE_LOCK_CONTROL command is executed to unlock the
device and some or all of the cash units.

Step 2: Optionally a WFS_CMD_CIM_CASH_IN_START / WFS_CMD_CIM_CASH_IN /
WFS_CMD_CIM_CASH_IN_END cash-in transaction or a WFS_CMD_CDM_DISPENSE /
WFS_CMD_CDM_PRESENT transaction on a cash recycler device may be performed.

Step 3: The operator was not required to remove any of the cash units, all cash units are still in
their original position.

Step 4: WFS_CMD_CIM_DEVICE_LOCK_CONTROL command is executed to lock the device
and the cash units.

The relation of lock/unlock control with the WFS_CMD_CIM_START_EXCHANGE and the
WFS_CMD_CIM_END_EXCHANGE commands is as follows:

Step 1: WFS_CMD_CIM_DEVICE_LOCK_CONTROL command is executed to unlock the
device and some or all of the cash units.

Step 2: Optionally a WFS_CMD_CIM_CASH_IN_START / WFS_CMD_CIM_CASH_IN /
WFS_CMD_CIM_CASH_IN_END cash-in transaction or a WFS_CMD_CDM_DISPENSE /
WFS_CMD_CDM_PRESENT transaction on a cash recycler device may be performed.

Step 3: The operator removes and reinserts one or multiple of the previously unlocked cash units.
The associated WFS_SRVE_CIM_CASHUNITINFOCHANGED event will be posted and after
the reinsertion the cash unit will show the status WFS_CIM_STATCUMANIP.

Step 4: WFS_CMD_CIM_START_EXCHANGE command is executed.

CWA 16374-15:2011 (E)

95

Step 5: WFS_CMD_CIM_END_EXCHANGE command is executed. During this command
execution the Service Provider implicitly locks the device and all previously unlocked cash units.
The cash unit status of the previously removed cash unit will be reset.

CWA 16374-15:2011 (E)

96

6.25 WFS_CMD_CIM_SET_MODE

Description This execute command is used to set the deposit mode for the device and is only applicable for
Mixed Media processing. The deposit mode determines how the device will process non cash
items that are inserted. The deposit mode applies to all subsequent transactions. The deposit mode
is persistent and is unaffected by a device reset by WFS_CMD_CIM_RESET or reset on another
interface. The command will fail with a WFS_ERR_INVALID_DATA error where an attempt is
made to set a mode that is not supported.

Input Param LPWFSCIMSETMODE lpMode;
typedef struct _wfs_cim_setmode
 {
 WORD wMixedMode;
 } WFSCIMSETMODE, *LPWFSCIMSETMODE;

wMixedMode
Specifies the Mixed Media mode of the device as one of the following values:

Value Meaning
WFS_CIM_MIXEDMEDIANOTACTIVE Mixed Media transactions are deactivated.

This is the default mode.
WFS_CIM_IPMMIXEDMEDIA Mixed Media transactions are activated in

combination with the IPM interface as
defined by the capability wMixedMode.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_CASHINACTIVE A cash-in transaction is active.
WFS_ERR_CIM_MEDIAINACTIVE An item processing transaction is active.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments The commands WFS_CMD_CIM_SET_MODE and WFS_CMD_IPM_SET_MODE are
equivalent; an application can use either to control the Mixed Media mode. If the requested mode
is already active WFS_CMD_CIM_SET_MODE command returns with WFS_SUCCESS.

CWA 16374-15:2011 (E)

97

6.26 WFS_CMD_CIM_PRESENT_MEDIA

Description This command opens the shutter and presents items to be taken by the customer after a
WFS_CMD_CIM_CASH_IN, WFS_CMD_CIM_ROLLBACK, WFS_CMD_CIM_RESET or
WFS_CMD_CIM_CREATE_P6_SIGNATURE command. The command is only valid on
positions where fwUsage reported by the WFS_INF_CIM_POSITION_CAPABILITIES
command is WFS_CIM_POSROLLBACK or WFS_CIM_POSREFUSE and where
bPresentControl reported by the WFS_INF_CIM_POSITION_CAPABILITIES command is
FALSE.

This command cannot be used to present items stacked through the CDM interface. Where this is
attempted the command fails with a WFS_ERR_SEQUENCE_ERROR error.

Mixed Media Mode: If the device is operating in Mixed Media mode
(WFSCIMSTATUS.wMixedMode == WFS_CIM_IPMMIXEDMEDIA) this command will not
perform any operation unless the WFS_CMD_IPM_PRESENT_MEDIA command is called or
has already been called on the IPM interface. Shutter control on devices that support Mixed
Media processing is always implicit.

Input Param LPWFSCIMPRESENT lpPresent;

If the input parameter is NULL then all refused items are returned from all positions in a sequence
determined by the Service Provider.
typedef struct _wfs_cim_present
 {
 WORD fwPosition;
 } WFSCIMPRESENT, *LPWFSCIMPRESENT;

fwPosition
Describes the position where the media is to be presented as one of the following values:

Value Meaning
WFS_CIM_POSNULL The default configuration information should

be used.
WFS_CIM_POSINLEFT Present items to the left input position.
WFS_CIM_POSINRIGHT Present items to the right input position.
WFS_CIM_POSINCENTER Present items to of the center input position.
WFS_CIM_POSINTOP Present items to the top input position.
WFS_CIM_POSINBOTTOM Present items to the bottom input position.
WFS_CIM_POSINFRONT Present items to the front input position.
WFS_CIM_POSINREAR Present items to the rear input position.
WFS_CIM_POSOUTLEFT Present items to the left output position.
WFS_CIM_POSOUTRIGHT Present items to the right output position.
WFS_CIM_POSOUTCENTER Present items to the center output position.
WFS_CIM_POSOUTTOP Present items to the top output position.
WFS_CIM_POSOUTBOTTOM Present items to the bottom output position.
WFS_CIM_POSOUTFRONT Present items to the front output position.
WFS_CIM_POSOUTREAR Present items to of the rear output position.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be
generated by this command:

Value Meaning
WFS_ERR_CIM_UNSUPPOSITION The position specified is not supported or is

not a valid position for this command.
WFS_ERR_CIM_SHUTTERNOTOPEN Shutter failed to open.
WFS_ERR_CIM_NOITEMS There were no items to present at the

specified position.
WFS_ERR_CIM_EXCHANGEACTIVE The CIM is in an exchange state.
WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED

Foreign items have been detected in the
input position.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated as a

CWA 16374-15:2011 (E)

98

result of this command:

Value Meaning
WFS_SRVE_CIM_ITEMSTAKEN The items have been removed by the user.

This event is only generated if the
bItemsTakenSensor field returned in the
capabilities information is TRUE.

WFS_SRVE_CIM_ITEMSPRESENTED Items have been presented to the user to be
taken.

Comments None.

CWA 16374-15:2011 (E)

99

7. Events

7.1 WFS_SRVE_CIM_SAFEDOOROPEN

Description This service event specifies that the safe door has been opened.

Event Param None.

Comments None.

CWA 16374-15:2011 (E)

100

7.2 WFS_SRVE_CIM_SAFEDOORCLOSED

Description This service event specifies that the safe door has been closed.

Event Param None.

Comments None.

CWA 16374-15:2011 (E)

101

7.3 WFS_USRE_CIM_CASHUNITTHRESHOLD

Description This user event specifies that a threshold condition has occurred in one of the cash units or the
threshold condition is removed. If the cash unit is a shared cash unit in a compound device then
this event can also be generated as a result of an operation on another device class.

Event Param LPWFSCIMCASHIN lpCashUnit;

lpCashUnit
Pointer to a WFSCIMCASHIN structure, describing the cash unit on which the threshold
condition occurred. See lpCashUnit->usStatus for the type of condition. For a description of the
WFSCIMCASHIN structure, see the definition of the WFS_INF_CIM_CASH_UNIT_INFO
command.

Comments None.

CWA 16374-15:2011 (E)

102

7.4 WFS_SRVE_CIM_CASHUNITINFOCHANGED

Description This service event specifies that a cash unit has changed in configuration or has been counted
during the WFS_CMD_CIM_CASH_UNIT_COUNT command execution. A physical cash unit
may have been removed or inserted or a cash unit parameter may have changed. This event will
also be posted on successful completion of the following commands:

WFS_CMD_CIM_SET_CASH_UNIT_INFO
WFS_CMD_CIM_END_EXCHANGE

If the cash unit is a shared cash unit in a compound device then this event can also be generated as
a result of an operation on another device class.

Event Param LPWFSCIMCASHIN lpCashUnit;

lpCashUnit
Pointer to the changed cash unit structure. For a description of the WFSCIMCASHIN structure
see the definition of the WFS_INF_CIM_CASH_UNIT_INFO command.

Comments None.

CWA 16374-15:2011 (E)

103

7.5 WFS_SRVE_CIM_TELLERINFOCHANGED

Description This service event specifies that the counts assigned to the specified teller have been changed.
This event is only returned as a result of a WFS_CMD_CIM_SET_TELLER_INFO command.

Event Param LPUSHORT lpusTellerID;

lpusTellerID
Pointer to an unsigned short holding the ID of the teller whose counts have been changed.

Comments None.

CWA 16374-15:2011 (E)

104

7.6 WFS_EXEE_CIM_CASHUNITERROR

Description This execute event specifies that a cash unit was addressed which caused a problem.

Event Param LPWFSCIMCUERROR lpCashUnitError;
typedef struct _wfs_cim_cu_error
 {
 WORD wFailure;
 LPWFSCIMCASHIN lpCashUnit;
 } WFSCIMCUERROR, *LPWFSCIMCUERROR;

wFailure
Specifies the kind of failure that occurred in the cash unit. Values are:

Value Meaning
WFS_CIM_CASHUNITEMPTY Specified cash unit is empty.
WFS_CIM_CASHUNITERROR Specified cash unit has malfunctioned.
WFS_CIM_CASHUNITFULL Specified cash unit is full.
WFS_CIM_CASHUNITLOCKED The bAppLock field of the

WFSCIMCASHIN structure has previously
been set to TRUE and the cash unit remains
locked.

WFS_CIM_CASHUNITNOTCONF Specified cash unit is not configured due to
being removed and/or replaced with a
different cash unit.

WFS_CIM_CASHUNITINVALID Specified cash unit is invalid.
WFS_CIM_CASHUNITCONFIG Attempt to change the setting of a self-

configuring cash unit.
WFS_CIM_FEEDMODULEPROBLEM A problem has been detected with the

feeding module.
WFS_CIM_CASHUNITPHYSICALLOCKED The cash unit could not be unlocked by the

WFS_CMD_CIM_DEVICE_LOCK_-
CONTROL command and remains
physically locked.

WFS_CIM_CASHUNITPHYSICALUNLOCKED
The cash unit could not be locked by the
WFS_CMD_CIM_DEVICE_LOCK_-
CONTROL command and remains
physically unlocked.

lpCashUnit
Pointer to the cash unit structure that caused the problem. For a description of the
WFSCIMCASHIN structure see the definition of the WFS_INF_CIM_CASH_UNIT_INFO
command.

Comments None.

CWA 16374-15:2011 (E)

105

7.7 WFS_SRVE_CIM_ITEMSTAKEN

Description This service event specifies that items presented to the user have been taken. This event may be
generated at any time.

Event Param LPWFSCIMPOSITIONINFO lpPositionInfo;
typedef struct _wfs_cim_position_info
 {
 WORD wPosition;
 WORD wAdditionalBunches;
 USHORT usBunchesRemaining;
 } WFSCIMPOSITIONINFO, *LPWFSCIMPOSITIONINFO;

wPosition
Specifies the position from which the items have been taken, set to one of the following values:

Value Meaning
WFS_CIM_POSINLEFT Items taken from the left input position.
WFS_CIM_POSINRIGHT Items taken from the right input position.
WFS_CIM_POSINCENTER Items taken from the center input position.
WFS_CIM_POSINTOP Items taken from the top input position.
WFS_CIM_POSINBOTTOM Items taken from the bottom input position.
WFS_CIM_POSINFRONT Items taken from the front input position.
WFS_CIM_POSINREAR Items taken from the rear input position.
WFS_CIM_POSOUTLEFT Items taken from the left output position.
WFS_CIM_POSOUTRIGHT Items taken from the right output position.
WFS_CIM_POSOUTCENTER Items taken from the center output position.
WFS_CIM_POSOUTTOP Items taken from the top output position.
WFS_CIM_POSOUTBOTTOM Items taken from the bottom output position.
WFS_CIM_POSOUTFRONT Items taken from the front output position.
WFS_CIM_POSOUTREAR Items taken from the rear output position.

wAdditionalBunches
This value will always be zero within this event.

usBunchesRemaining
This value will always be zero within this event.

Comments None.

CWA 16374-15:2011 (E)

106

7.8 WFS_SRVE_CIM_COUNTS_CHANGED

Description This service event is generated if the device is a compound device and the counts in a shared cash
unit have changed as a result of an operation on the other device class other than as a result of an
operation that explicitly sets counts. For example, WFS_CMD_CDM_SET_CASH_UNIT_INFO
and WFS_CMD_CDM_END_EXCHANGE commands on the CDM and
WFS_CMD_IPM_SET_MEDIA_BIN_INFO command on the IPM.

Event Param LPWFSCIMCOUNTSCHANGED lpCountsChanged;
typedef struct _wfs_cim_counts_changed
 {
 USHORT usCount;
 LPUSHORT lpusCUNumList;
 } WFSCIMCOUNTSCHANGED, *LPWFSCIMCOUNTSCHANGED;

usCount
The size of lpusCUNumList.

lpusCUNumList
A list of the usNumber values of the cash units whose counts have changed.

Comments None.

CWA 16374-15:2011 (E)

107

7.9 WFS_EXEE_CIM_INPUTREFUSE

Description This execute event specifies that the device has refused either a portion or the entire amount of the
cash-in order.

Event Param LPUSHORT lpusReason;

lpusReason
Pointer to an USHORT holding the reason for refusing a part of the amount. Possible values are:

Value Meaning
WFS_CIM_CASHINUNITFULL Cash unit is full.
WFS_CIM_INVALIDBILL Recognition of the items took place, but one

or more of the items are invalid.
WFS_CIM_NOBILLSTODEPOSIT There are no items in the input area.
WFS_CIM_DEPOSITFAILURE A deposit has failed for a reason not covered

by the other reasons and the failure is not a
fatal hardware problem.

WFS_CIM_COMMINPCOMPFAILURE Failure of a common input component which
is shared by all cash units.

WFS_CIM_STACKERFULL The intermediate stacker is full.
WFS_CIM_FOREIGN_ITEMS_DETECTED Foreign items have been detected in the

input position.
WFS_CIM_INVALIDBUNCH Recognition of the items did not take place.

The bunch of notes presented is invalid, e.g.
it is too large or was presented incorrectly.

WFS_CIM_COUNTERFEIT One or more counterfeit items have been
detected and refused. This is only applicable
to devices which do not support a legislative
note handling standard and are capable of
differentiating between invalid and
counterfeit items.

WFS_CIM_LIMITOVERTOTALITEMS Number of items count exceeded the
limitation set with the
WFS_CMD_CIM_SET_CASH_IN_LIMIT
command.

WFS_CIM_LIMITOVERAMOUNT Amount exceeded the limitation set with the
WFS_CMD_CIM_SET_CASH_IN_LIMIT
command.

Comments None.

CWA 16374-15:2011 (E)

108

7.10 WFS_SRVE_CIM_ITEMSPRESENTED

Description This service event specifies that items have been presented to the output position, and the shutter
has been opened to allow the user to take the items.

Event Param LPWFSCIMPOSITIONINFO lpPositionInfo;
typedef struct _wfs_cim_position_info
 {
 WORD wPosition;
 WORD wAdditionalBunches;
 USHORT usBunchesRemaining;
 } WFSCIMPOSITIONINFO, *LPWFSCIMPOSITIONINFO;

wPosition
Specifies the position from which the items have been presented, set to one of the following
values:

Value Meaning
WFS_CIM_POSOUTLEFT Items presented at the left output position.
WFS_CIM_POSOUTRIGHT Items presented at the right output position.
WFS_CIM_POSOUTCENTER Items presented at the center output position.
WFS_CIM_POSOUTTOP Items presented at the top output position.
WFS_CIM_POSOUTBOTTOM Items presented at the bottom output

position.
WFS_CIM_POSOUTFRONT Items presented at the front output position.
WFS_CIM_POSOUTREAR Items presented at the rear output position.
WFS_CIM_POSINLEFT Items presented at the left input position.
WFS_CIM_POSINRIGHT Items presented at the right input position.
WFS_CIM_POSINCENTER Items presented at the center input position.
WFS_CIM_POSINTOP Items presented at the top input position.
WFS_CIM_POSINBOTTOM Items presented at the bottom input position.
WFS_CIM_POSINFRONT Items presented at the front input position.
WFS_CIM_POSINREAR Items presented at the rear input position.

wAdditionalBunches
Specifies whether or not additional bunches of items are remaining to be presented as a result of
the current operation, set to one of the following values:

Value Meaning
WFS_CIM_ADDBUNCHNONE No additional bunches remain.
WFS_CIM_ADDBUNCHONEMORE At least one additional bunch remains.
WFS_CIM_ADDBUNCHUNKNOWN It is unknown whether additional bunches

remain.

usBunchesRemaining
If wAdditionalBunches is WFS_CIM_ADDBUNCHONEMORE, specifies the number of
additional bunches of items remaining to be presented as a result of the current operation. If the
number of additional bunches is at least one, but the precise number is unknown,
usBunchesRemaining will be WFS_CIM_NUMBERUNKNOWN. For any other value of
wAdditionalBunches, usBunchesRemaining will be zero.

Comments None.

CWA 16374-15:2011 (E)

109

7.11 WFS_SRVE_CIM_ITEMSINSERTED

Description This service event specifies that items have been inserted into the cash-in position by the user.
This event may be generated at any time.

Event Param LPWFSCIMPOSITIONINFO lpPositionInfo;
typedef struct _wfs_cim_position_info
 {
 WORD wPosition;
 WORD wAdditionalBunches;
 USHORT usBunchesRemaining;
 } WFSCIMPOSITIONINFO, *LPWFSCIMPOSITIONINFO;

wPosition
Specifies the position where the items have been inserted, set to one of the following values:

Value Meaning
WFS_CIM_POSINLEFT Items detected in the left input position.
WFS_CIM_POSINRIGHT Items detected in the right input position.
WFS_CIM_POSINCENTER Items detected in the center input position.
WFS_CIM_POSINTOP Items detected in the top input position.
WFS_CIM_POSINBOTTOM Items detected in the bottom input position.
WFS_CIM_POSINFRONT Items detected in the front input position.
WFS_CIM_POSINREAR Items detected in the rear input position.
WFS_CIM_POSOUTLEFT Items detected in the left output position.
WFS_CIM_POSOUTRIGHT Items detected in the right output position.
WFS_CIM_POSOUTCENTER Items detected in the center output position.
WFS_CIM_POSOUTTOP Items detected in the top output position.
WFS_CIM_POSOUTBOTTOM Items detected in the bottom output position.
WFS_CIM_POSOUTFRONT Items detected in the front output position.
WFS_CIM_POSOUTREAR Items detected in the rear output position.

wAdditionalBunches
This value will always be zero within this event.

usBunchesRemaining
This value will always be zero within this event.

Comments None.

CWA 16374-15:2011 (E)

110

7.12 WFS_EXEE_CIM_NOTEERROR

Description This execute event specifies the reason for an item detection error during an operation which
involves moving items.

Event Param LPUSHORT lpusReason;

lpusReason
Pointer to an USHORT holding the reason for the item detection error. Possible values are:

Value Meaning
WFS_CIM_DOUBLENOTEDETECTED Double notes have been detected.
WFS_CIM_LONGNOTEDETECTED A long note has been detected.
WFS_CIM_SKEWEDNOTE A skewed note has been detected.
WFS_CIM_INCORRECTCOUNT An item counting error has occurred.
WFS_CIM_NOTESTOOCLOSE Notes have been detected as being too close.
WFS_CIM_OTHERNOTEERROR An item error not covered by the other

values has been detected.
WFS_CIM_SHORTNOTEDETECTED A short note has been detected.

Comments None.

CWA 16374-15:2011 (E)

111

7.13 WFS_EXEE_CIM_SUBCASHIN

Description This execute event is generated when one of the sub cash-in operations into which the cash-in
operation was divided has finished successfully.

Event Param LPWFSCIMNOTENUMBERLIST lpNoteNumberList;

lpNoteNumberList
Pointer to a WFSCIMNOTENUMBERLIST structure holding a list of banknote numbers which
have been identified and accepted during execution of the sub cash-in. This field will contain the
banknote numbers of the accepted items. For a description of the WFSCIMNOTENUMBERLIST
structure see the definition of the WFS_INF_CIM_CASH_UNIT_INFO command.

Comments None.

CWA 16374-15:2011 (E)

112

7.14 WFS_SRVE_CIM_MEDIADETECTED

Description This service event is generated if media is detected during a reset (WFS_CMD_CIM_RESET
command). The parameter on the event specifies the position of the media on completion of the
reset. If the device has been unable to successfully move the items found then this parameter will
be NULL.

Event Param LPWFSCIMITEMPOSITION lpItemPosition;

For a description of this parameter see the definition of the WFS_CMD_CIM_RESET command.

Comments None.

CWA 16374-15:2011 (E)

113

7.15 WFS_EXEE_CIM_INPUT_P6

Description This execute event is generated if level 2 and / or level 3 notes are detected during the cash
processing operation.

Event Param LPWFSCIMP6INFO *lppP6Info;

Pointer to a NULL-terminated array of pointers to WFSCIMP6INFO structures, one structure for
every level. For the description of the structure see the definition of the
WFS_INF_CIM_GET_P6_INFO command.

Comments None.

CWA 16374-15:2011 (E)

114

7.16 WFS_EXEE_CIM_INFO_AVAILABLE

Description This execute event is generated when information is available for items detected during the cash
processing operation.

Event Param LPWFSCIMITEMINFOSUMMARY *lppItemInfoSummary;

Pointer to a NULL-terminated array of pointers to WFSCIMITEMINFOSUMMARY structures,
one structure for every level.
typedef struct _wfs_cim_item_info_summary
 {
 USHORT usLevel;
 USHORT usNumOfItems;
 } WFSCIMITEMINFOSUMMARY, *LPWFSCIMITEMINFOSUMMARY;

usLevel
Defines the note level. Possible values are:

Value Meaning
WFS_CIM_LEVEL_2 Information for level 2 notes.
WFS_CIM_LEVEL_3 Information for level 3 notes.
WFS_CIM_LEVEL_4 Information for level 4 notes.

usNumOfItems
Number of items classified as usLevel which have information available.

Comments None.

CWA 16374-15:2011 (E)

115

7.17 WFS_EXEE_CIM_INSERTITEMS

Description This event notifies the application when the device is ready for the user to insert items.

Event Param None.

Comments None.

CWA 16374-15:2011 (E)

116

7.18 WFS_SRVE_CIM_DEVICEPOSITION

Description This service event reports that the device has changed its position status.

Event Param LPWFSCIMDEVICEPOSITION lpDevicePosition;
typedef struct _wfs_cim_device_position
 {
 WORD wPosition;
 } WFSCIMDEVICEPOSITION, *LPWFSCIMDEVICEPOSITION;

wPosition
Position of the device as one of the following values:

Value Meaning
WFS_CIM_DEVICEINPOSITION The device is in its normal operating

position.
WFS_CIM_DEVICENOTINPOSITION The device has been removed from its

normal operating position.
WFS_CIM_DEVICEPOSUNKNOWN The position of the device cannot be

determined.

Comments None.

CWA 16374-15:2011 (E)

117

7.19 WFS_SRVE_CIM_POWER_SAVE_CHANGE

Description This service event specifies that the power save recovery time has changed.

Event Param LPWFSCIMPOWERSAVECHANGE lpPowerSaveChange;
typedef struct _wfs_cim_power_save_change
 {
 USHORT usPowerSaveRecoveryTime;
 } WFSCIMPOWERSAVECHANGE, *LPWFSCIMPOWERSAVECHANGE;

usPowerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational
state. This value is zero if the device exited the power saving mode.

Comments If another device class compounded with this device enters into a power saving mode, this device
will automatically enter into the same power saving mode and this event will be generated.

CWA 16374-15:2011 (E)

118

7.20 WFS_EXEE_CIM_INCOMPLETEREPLENISH

Description This execute event is generated when some items had been moved before the
WFS_CMD_CIM_REPLENISH command failed with an error code (not WFS_SUCCESS), but
some items were moved then the details will be reported with this event. This event can only
occur once per command.

Event Param LPWFSCIMINCOMPLETEREPLENISH lpIncompleteReplenish;
typedef struct _wfs_cim_incomplete_replenish
 {
 LPWFSCIMREPRES lpReplenish;
 } WFSCIMINCOMPLETEREPLENISH, *LPWFSCIMINCOMPLETEREPLENISH;

lpReplenish
The WFSCIMREPRES structure is defined in the description of the command
WFS_CMD_CIM_REPLENISH. Note that in this case the values in this structure report the
amount and number of each denomination that have actually been moved during the
replenishment command.

Comments None.

CWA 16374-15:2011 (E)

119

8. ATM Cash-In Transaction Flow - Application Guidelines

The following table is a summary of the application flows required given the possible values for bShutterControl
and bItemsTakenSensor for a successful cash-in transaction. In all cases bPresentControl == TRUE.

 bItemsInsertedSensor == TRUE bItemsInsertedSensor == FALSE
bShutterControl == TRUE WFS_CMD_CIM_CASH_IN_START

WFS_CMD_CIM_CASH_IN
InsertedEvent generated
WFS_CMD_CIM_CASH_IN_END

WFS_CMD_CIM_CASH_IN_START
WFS_CMD_CIM_CASH_IN

WFS_CMD_CIM_CASH_IN_END

bShutterControl == FALSE WFS_CMD_CIM_CASH_IN_START
WFS_CMD_CIM_OPEN_SHUTTER
InsertedEvent generated
WFS_CMD_CIM_CLOSE_SHUTTER
WFS_CMD_CIM_CASH_IN
WFS_CMD_CIM_CASH_IN_END

WFS_CMD_CIM_CASH_IN_START
WFS_CMD_CIM_OPEN_SHUTTER
User Input
WFS_CMD_CIM_CLOSE_SHUTTER
WFS_CMD_CIM_CASH_IN
WFS_CMD_CIM_CASH_IN_END

The following sections describe the flow of a cash-in transaction on a Self-Service CIM. These application flows
are provided as guidelines only.

CWA 16374-15:2011 (E)

120

8.1 OK Transaction (Explicit Shutter Control)

The following table describes a normal cash-in transaction flow where everything works and the shutter is explicitly
controlled by the application.

This flow covers the following cases:

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE

• bShutterControl == FALSE, bItemsInsertedSensor == FALSE

Step Customer Application XFS Commands and Events
1. Customer selects cash-

in operation.
 WFS_CMD_CIM_CASH_IN_START

2. Open the shutter of the input tray. WFS_CMD_CIM_OPEN_SHUTTER
WFS_SRVE_CIM_ITEMSPRESENTED

3. Ask the customer to insert money.
4. Customer inserts

money.

5. If bItemsInsertedSensor
== FALSE, confirm
completion.

 If bItemsInsertedSensor == TRUE:
WFS_SRVE_CIM_ITEMSINSERTED

6. Close shutter. WFS_CMD_CIM_CLOSE_SHUTTER
7. WFS_CMD_CIM_CASH_IN

completion of
WFS_CMD_CIM_CASH_IN

8. Display the number of bills and/or
amount recognized so far.

9. Ask the customer for further
actions:

If he wants to insert more money:
Repeat from step 2.

If he wants to finish the
transaction:
Continue with step 10.

If he wants to get back all items
inserted so far see table
"Cancellation by Customer
(Explicit Shutter Control)"

10. Transport the money into the cash
units
RECYCLE_UNIT/CASHINBOX

WFS_CMD_CIM_CASH_IN_END

11. Credit the money to the customer's
account.

12. End of transaction.

CWA 16374-15:2011 (E)

121

8.2 Cancellation by Customer (Explicit Shutter Control)

The following table describes the flow of a cash-in transaction where the customer wants all the items to be
returned after recognition.

This flow covers the following cases:

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE

• bShutterControl == FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor == TRUE

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == FALSE

• bShutterControl == FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor == FALSE

Step Customer Application XFS Commands and Events
1.-9. See OK Transaction

(Explicit Shutter
Control).

10. Selection: Return all the
items.

 Transport the items recognized to
the output position.

WFS_CMD_CIM_CASH_IN_ROLLBACK

11. Open shutter. WFS_CMD_CIM_OPEN_SHUTTER
WFS_SRVE_CIM_ITEMSPRESENTED

 Request removal of the money.
 Customer takes the

money from the output
position.

12. If bItemsTakenSensor
== FALSE, confirm
completion or use
application timeout.

 If bItemsTakenSensor == TRUE:
WFS_SRVE_CIM_ITEMSTAKEN

13. Close shutter. WFS_CMD_CIM_CLOSE_SHUTTER
14. End of transaction.

CWA 16374-15:2011 (E)

122

8.3 Stacker Becomes Full (Explicit Shutter Control)

The following table describes the flow of a cash-in transaction when the stacker becomes full during the transaction
and the shutter is explicitly controlled by the application. This flow covers the following cases:

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE

• bShutterControl == FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor == TRUE

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == FALSE

• bShutterControl == FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor == FALSE

Step Customer Application XFS Commands and Events
1.-6. See OK Transaction

(Explicit Shutter
Control).

7. WFS_CMD_CIM_CASH_IN
WFS_EXEE_CIM_INPUTREFUSE
(StackerFull) and
WFS_CMD_CIM_CASH_IN completes
with WFS_SUCCESS

8. Open shutter. WFS_CMD_CIM_OPEN_SHUTTER
WFS_SRVE_CIM_ITEMSPRESENTED

9. Ask the customer to remove the
excess money.

10. Customer removes
excess money.

11. If bItemsTakenSensor
== FALSE: confirm
completion or use
application timeout.

 If bItemsTakenSensor == TRUE:
WFS_SRVE_CIM_ITEMSTAKEN

12. Close shutter WFS_CMD_CIM_CLOSE_SHUTTER
13. Display the amount recognized so

far and tell the customer that the
stacker is full.

14. Ask the customer for further
actions:

If he wants to deposit the amount:
Continue with step 15.

If he wants to get back all items
inserted so far see table
"Cancellation by Customer
(Explicit Shutter Control)"

15. Transport the money into the cash
units
RECYCLE_UNIT/CASHINBOX.

WFS_CMD_CIM_CASH_IN_END

16. Ask the customer if he wants to
deposit more money.

If he wants to deposit more:
Repeat from step 1.

If he wants to finish the
transaction:
Continue with step 17.

17. Credit the money to the customer's
account.

18. End of transaction.

CWA 16374-15:2011 (E)

123

8.4 Bill Recognition Error (Explicit Shutter Control)

The following table describes the flow of a cash-in transaction when the items are rejected as unrecognized during
the transaction and the shutter is explicitly controlled by the application.

This flow covers the following cases:

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE

• bShutterControl == FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor == TRUE

• bShutterControl == FALSE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == FALSE

• bShutterControl == FALSE, bItemsInsertedSensor == FALSE, bItemsTakenSensor == FALSE

Step Customer Application XFS Commands and Events
1.-6. See OK Transaction

(Explicit Shutter
Control).

7. WFS_CMD_CIM_CASH_IN
WFS_EXEE_CIM_INPUTREFUSE
(InvalidBill) and completion of
WFS_CMD_CIM_CASH_IN with
WFS_SUCCESS

8. Open shutter. WFS_CMD_CIM_OPEN_SHUTTER
WFS_SRVE_CIM_ITEMSPRESENTED

9. Tell the customer that the bills
were not recognized and that he
should take the bills.

10. Customer removes
unrecognized money

11. If bItemsTakenSensor
== FALSE: confirm
completion or use
application timeout.

 If bItemsTakenSensor == TRUE:
WFS_SRVE_CIM_ITEMSTAKEN

12. Close shutter. WFS_CMD_CIM_CLOSE_SHUTTER
13. Display the amount recognized so

far.

14. Ask the customer for further
actions:

If he wants to deposit the amount:
Continue with step 15.

If he wants to get back all items
inserted so far see table
"Cancellation by Customer
(Explicit Shutter Control)"

15. Transport the money into the cash
units
RECYCLE_UNIT/CASHINBOX.

WFS_CMD_CIM_CASH_IN_END

16. Credit the money to the customer's
account.

17. End of transaction.

CWA 16374-15:2011 (E)

124

8.5 OK Transaction (Implicit Shutter Control)

The following table describes a normal cash-in transaction flow where everything works and the shutter is
implicitly controlled by the Service Provider. In this case the WFS_CMD_CIM_OPEN_SHUTTER and
WFS_CMD_CIM_CLOSE_SHUTTER commands are not explicitly used by the application.

This flow covers the following cases:

• bShutterControl == TRUE, bItemsInsertedSensor == TRUE

• bShutterControl == TRUE, bItemsInsertedSensor == FALSE

Step Customer Application XFS Commands and Events
1. Customer selects cash-

in operation.
 WFS_CMD_CIM_CASH_IN_START

2. WFS_CMD_CIM_CASH_IN
The Service Provider opens the shutter.
WFS_EXEE_CIM_INSERTITEMS event is
sent when the shutter is fully open and the
device is ready to begin accepting items.

3. Ask the customer to insert money.
4. Customer inserts

money.

5. If bItemsInsertedSensor == TRUE:
WFS_SRVE_CIM_ITEMSINSERTED

6. The Service Provider closes the shutter and
begins bill recognition.
The WFS_CMD_CIM_CASH_IN command
completes.

7. Display the number of bills and/or
amount recognized so far.

8. Ask the customer for further
actions:

If he wants to insert more money:
Repeat from step 2.

If he wants to finish the
transaction:
Continue with step 9.

If he wants to get back all items
inserted so far see table
"Cancellation by Customer
(Implicit Shutter Control)"

9. Transport the money into the cash
units
RECYCLE_UNIT/CASHINBOX.

WFS_CMD_CIM_CASH_IN_END

10. Credit the money to the customer's
account.

11. End of transaction.

CWA 16374-15:2011 (E)

125

8.6 Cancellation by Customer (Implicit Shutter Control)

The following table describes the flow of a cash-in transaction where the customer wants all the items to be
returned after recognition and the shutter is implicitly controlled by the Service Provider. In this case the
WFS_CMD_CIM_OPEN_SHUTTER and WFS_CMD_CIM_CLOSE_SHUTTER commands are not used.

This flow covers the following cases:

• bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE

• bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == FALSE

Step Customer Application XFS Commands and Events
1.-8. See OK Transaction.
9. Selection: Return all the

items.

10. Transport the items recognized to
the output position.

WFS_CMD_CIM_CASH_IN_ROLLBACK
WFS_SRVE_CIM_ITEMSPRESENTED

11. Request removal of the money.
12. Customer takes the

money from the output
position.

13. If bItemsTakenSensor
== FALSE: confirm
completion or use
application timeout.

 If bItemsTakenSensor == TRUE:
WFS_SRVE_CIM_ITEMSTAKEN
The Service Provider closes the shutter.

14. End of transaction

CWA 16374-15:2011 (E)

126

8.7 Implicit Control of the Shutter - WFS_EXEE_CIM_SUBCASHIN event

The following table describes the chronological steps taken in the flow of a cash-in transaction where the cash-in
operation is subdivided into a number of logical operations under hardware control. In this case a
WFS_EXEE_CIM_SUBCASHIN event is generated for each sub cash-in operation. This may be the case for
instance where a device does its coin or bill recognition in batches of 25. In this case the Service Provider would
post a WFS_EXEE_CIM_SUBCASHIN event each time 25 coins were processed. In this example the shutter is
implicitly controlled by the Service Provider so the WFS_CMD_CIM_OPEN_SHUTTER and
WFS_CMD_CIM_CLOSE_SHUTTER commands are not used.

This flow covers the following cases:

• bShutterControl == TRUE, bItemsInsertedSensor == TRUE

• bShutterControl == TRUE, bItemsInsertedSensor == FALSE

Step Customer Application XFS Commands and Events
1.-5. See OK Transaction

(Implicit Shutter
Control).

6. The Service Provider closes the shutter and
begins bill recognition.

7. The device processes the bills or coins in
batches. Each time a batch is completed a
WFS_EXEE_CIM_SUBCASHIN event is
posted then the cash-in operation continues.

8. The WFS_CMD_CIM_CASH_IN
command completes.

9. Display the number of bills and/or
amount recognized so far.

10. Ask the customer for further
actions:

If he wants to insert more money:
Repeat from step 2.

If he wants to finish the
transaction:
Continue with step 11.

If he wants to get back all items
inserted so far see table
"Cancellation by Customer
(Implicit Shutter Control)"

11. WFS_CMD_CIM_CASH_IN_END
12. End of transaction.

CWA 16374-15:2011 (E)

127

8.8 OK Transaction - Note Handling Standard Supported

This section describes a possible cash-in transaction where a note handing standard is supported and everything
works fine when level 2 / level 3 notes are inserted.

Step Customer Application XFS Command
1. Select function cash-in. Open the shutter of the input tray. WFS_CMD_CIM_CASH_IN_START

WFS_CMD_CIM_OPEN_SHUTTER
2. Ask the customer to insert money.
3. WFS_CMD_CIM_CLOSE_SHUTTER

WFS_CMD_CIM_CASH_IN
(WFS_CIM_POSBILLINPUT)

4. Insert money. WFS_SRVE_CIM_ITEMSINSERTED
WFS_EXEE_CIM_INPUTP6 and
completion of
WFS_CMD_CIM_CASH_IN.

5. Get number of level 2 / level 3
notes.

WFS_INF_CIM_GET_P6_INFO

6. Display the amount recognized so
far and inform customer that level
2 / level 3 notes are inserted.

7. Store signatures of level 2 / level 3
notes with customer data.

Call command
WFS_INF_CIM_GET_P6_SIGNATURE
once for every signature.

8. Ask the customer for further
actions:

If he wants to insert more money:
Repeat from step 2.

If he wants to finish the
transaction:
Continue with step 9.

If he wants to get back all items
inserted so far see table
"cancellation by customer"

9. Transport the money into the cash
units
RECYCLE_UNIT/CASHINBOX.

WFS_CMD_CIM_CASH_IN_END

10. At this point the application should
decide how to credit the
appropriate money to the
customer's account, and inform the
customer about the amounts of
level 2 and level 3 notes.

11. End of transaction.

CWA 16374-15:2011 (E)

128

8.9 Multiple Refused Notes (Implicit Shutter Control)

The following table describes the flow of a cash-in transaction where items are rejected during the transaction and
the Service Provider implicitly controls the shutter. In this case the WFS_CMD_CIM_OPEN_SHUTTER and
WFS_CMD_CIM_CLOSE_SHUTTER commands are not used. Additionally, the number of items refused may be
greater than the number of items that can be presented at the output position. Due to the complexity of this scenario,
control of the shutter must be implicit. Therefore, there is no corresponding flow for explicit shutter control.

Step Customer Application XFS Command
1.-5. See OK Transaction

(Implicit Shutter
Control).

6. The Service Provider implicitly closes the
shutter and begins bill recognition. As a
result of the note processing n batches of
notes must be returned to the customer.

7. WFS_EXEE_CIM_INPUTREFUSE
8. Return batch 1 of notes to customer.

The Service Provider implicitly opens the
shutter.
WFS_SRVE_CIM_ITEMSPRESENTED

9. Tell the customer that the bills were
not accepted, and to take the bills.

10. Customer removes
unrecognized money.

 WFS_SRVE_CIM_ITEMSTAKEN
The Service Provider implicitly closes the
shutter.

11. Repeat steps 11.-13. until batches 2 to n-1
are returned to the customer.
The Service Provider implicitly opens the
shutter.
WFS_SRVE_CIM_ITEMSPRESENTED

12. Tell the customer to take the bills.
13. Customer removes

unrecognized money.
 WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the
shutter.

14. Return Batch n (last) of notes to customer.
The Service Provider implicitly opens the
shutter.
WFS_SRVE_CIM_ITEMSPRESENTED

15. Completion of WFS_CMD_CIM_CASH_IN
with WFS_SUCCESS.

16. Tell the customer to take the bills.
17. Customer removes

unrecognized money.

18. WFS_SRVE_CIM_ITEMSTAKEN
The Service Provider implicitly closes the
shutter.

19. Display the amount recognized so
far.

20. Ask the customer for further
actions:

If he wants to deposit the amount:
Continue with step 21.

If he wants to get back all items
inserted so far see table
"Cancellation by Customer
(Implicit Shutter Control)"

CWA 16374-15:2011 (E)

129

21. Transport the money into the cash
units
RECYCLE_UNIT/CASHINBOX.

WFS_CMD_CIM_CASH_IN_END

22. Credit the money to the customer's
account.

23. End of transaction.

CWA 16374-15:2011 (E)

130

8.10 Multiple Rollback Notes (Implicit Shutter Control)

The following table describes the flow of a roll back operation where items are rolled back during the transaction
and the Service Provider implicitly controls the shutter. In this case the WFS_CMD_CIM_OPEN_SHUTTER and
WFS_CMD_CIM_CLOSE_SHUTTER commands are not used. Additionally, the number of items rolled back may
be greater than the number of items that can be presented at the output position. Due to the complexity of this
scenario, control of the shutter must be implicit. Therefore, there is no corresponding flow for explicit shutter
control.

Step Customer Application XFS Command
1.-9. See Cancellation by

Customer (Implicit
Shutter Control).

10. Initiate the roll back operation. WFS_CMD_CIM_CASH_IN_ROLLBACK
11. The Service Provider begins the roll back.

As a result of this n batches of notes must be
returned to the customer.

12. Return batch of notes to customer.
The Service Provider implicitly opens the
shutter.
WFS_SRVE_CIM_ITEMSPRESENTED

13. Tell the customer to take the bills.
14. Customer removes

money.
 WFS_SRVE_CIM_ITEMSTAKEN

The Service Provider implicitly closes the
shutter.

15. Repeat steps 11.-14. until batches 2 to n-1
are returned to the customer.

16. Return batch n (last) of notes to customer.
The Service Provider implicitly opens the
shutter.
WFS_SRVE_CIM_ITEMSPRESENTED

17. Completion of
WFS_CMD_CIM_CASH_IN_ROLLBACK
with WFS_SUCCESS.

18. Tell the customer to take the bills.
19. Customer removes

money.

20. WFS_SRVE_CIM_ITEMSTAKEN
The Service Provider implicitly closes the
shutter.

21. End of transaction.

CWA 16374-15:2011 (E)

131

8.11 Bill Recognition Error (WFS_CMD_CIM_PRESENT_MEDIA Command
Supported)

The following table describes the flow of a cash-in transaction when the items are rejected as unrecognized during
the transaction and the WFS_CMD_CIM_PRESENT_MEDIA command is supported.

This flow covers the following case:

• bShutterControl == FALSE, bPresentControl == FALSE, bItemsTakenSensor == TRUE

Step Customer Application XFS Commands and Events
1.-6. See OK Transaction

(Explicit Shutter
Control).

7. WFS_EXEE_CIM_INPUTREFUSE
(InvalidBill) and completion of
WFS_CMD_CIM_CASH_IN with
WFS_SUCCESS.

8. Present bills to customer. WFS_CMD_CIM_PRESENT_MEDIA
command is issued. The shutter opens, a
WFS_SRVE_CIM_ITEMSPRESENTED is
fired followed by a
WFS_CMD_CIM_PRESENT_MEDIA
command completion event.

9. Tell the customer that the bills
were not recognized and that he
should take the bills.

10. Customer removes
unrecognized money.

11. WFS_SRVE_CIM_ITEMSTAKEN
The Service Provider implicitly closes the
shutter.

12. Display the amount recognized so
far.

13. Ask the customer for further
actions:

If he wants to deposit the amount:
Continue with step 14.

If he wants to get back all items
inserted so far see table
"Cancellation by Customer
(Explicit Shutter Control)"

14. Transport the money into the cash
units
RECYCLE_UNIT/CASHINBOX.

WFS_CMD_CIM_CASH_IN_END

15. Credit the money to the customer's
account.

16. End of transaction.

CWA 16374-15:2011 (E)

132

8.12 Cancellation by Customer (Implicit Shutter Control and
WFS_CMD_CIM_PRESENT_MEDIA Command Supported)

The following table describes the flow of a cash-in transaction where the customer wants all the items to be
returned after recognition and the WFS_CMD_CIM_PRESENT_MEDIA command is supported.

This flow covers the following case:

• bShutterControl == TRUE, bPresentControl == FALSE, bItemsTakenSensor == TRUE

Step Customer Application XFS Commands and Events
1.-9. See OK Transaction
10. Selection : Return all

the items.

11. Transport the items recognized to
an internal position.

WFS_CMD_CIM_CASH_IN_ROLLBACK

12. WFS_CMD_CIM_CASH_IN_ROLLBACK
completion.

13. Present bills to the customer. WFS_CMD_CIM_PRESENT_MEDIA
command is issued. The shutter opens and a
WFS_SRVE_CIM_ITEMSPRESENTED is
fired.

14. WFS_CMD_CIM_PRESENT_MEDIA
completion event.

15. Request removal of the money.
16. Customer takes the

money from the output
position.

17. WFS_SRVE_CIM_ITEMSTAKEN
18. End of transaction.

CWA 16374-15:2011 (E)

133

9. ATM Mixed Media Transaction Flow – Application Guidelines

Compound CIM/IPM deposit devices are able to accept and process different types of media such as cash and
checks. In order to improve the speed and usability of deposit devices it may be desirable to allow a bunch of items
deposited to contain a variety of media types. Typically this is a bunch containing both cash and checks and is
termed ‘Mixed Media processing’.

During this type of transaction the customer will insert cash and checks together in one bunch. The device will
identify each item. Items not positively identified may be immediately returned to the customer. All remaining
items can be deposited and shared deposit bins can be configured to receive mixed items. The application can also
choose to return all items. Additionally the specification allows for depositing all checks and returning all cash or
vice-versa depending on requirements.

In order to facilitate devices of differing hardware design and to support reuse of the XFS API, Mixed Media
processing is achieved by initiating a CIM and an IPM transaction in parallel. The application and Service
Providers must be able to handle concurrent CIM and IPM commands and events. The application will use the
WFS_CMD_CIM_SET_MODE or WFS_CMD_IPM_SET_MODE command to activate Mixed Media processing.
The literals used (i.e. WFS_CIM_IPMMIXEDMEDIA) describe the modes and indicate the nature of the
compound device. This allows applications to open the correct interfaces to drive the transaction.

Mixed Media processing commands that move media in the device require commands to be called on both CIM and
IPM interfaces. See the table below for a list of CIM commands and their IPM counterparts. Where the operation is
to be cancelled the application is required to cancel only one command on either the CIM or IPM interface.
Applications must be aware that the command that was NOT explicitly cancelled may complete with a
WFS_ERR_CANCELED error.

For example the application must call both WFS_CMD_CIM_CASH_IN and WFS_CMD_IPM_MEDIA_IN
commands to initiate the transaction. If an application wishes to cancel the transaction before items are inserted,
only the WFS_CMD_CIM_CASH_IN command can be cancelled and the WFS_CMD_IPM_MEDIA_IN
command will also be cancelled.

Devices suitable for Mixed Media processing must report WFSCIMCAPS.bShutterControl == TRUE to allow
WFS_CMD_CIM_PRESENT_MEDIA and WFS_CMD_IPM_PRESENT_MEDIA commands to work
concurrently.

The Mixed Media mode can be determined by calling WFS_INF_CIM_STATUS or WFS_INF_IPM_STATUS
command and checking the value of the wMixedMode field.

Where an error occurs both CIM and IPM interfaces will report it. To recover the device a reset command can be
called on either of the interfaces. Reset calls on both CIM and IPM interfaces are not required.

Application refusal (in the IPM interface) is not supported in Mixed Media mode.

To initiate a Mixed Media transaction the WFS_CMD_CIM_CASH_IN_START command must be called. There is
no equivalent command to the WFS_CMD_CIM_CASH_IN_START command on the IPM interface.

Commands and their counterparts:

This table lists the counterpart IPM commands which must be called as well as the CIM commands when in Mixed
Media processing mode.

CIM command IPM Command

WFS_CMD_CIM_CASH_IN WFS_CMD_IPM_MEDIA_IN

WFS_CMD_CIM_CASH_IN_END WFS_CMD_IPM_MEDIA_IN_END or where
bMixedDepositAndRollback is TRUE
WFS_CMD_IPM_MEDIA_IN_ROLLBACK

WFS_CMD_CIM_CASH_IN_ROLLBACK WFS_CMD_IPM_MEDIA_IN_ROLLBACK or where
bMixedDepositAndRollback is TRUE
WFS_CMD_IPM_MEDIA_IN_END

WFS_CMD_CIM_PRESENT_MEDIA WFS_CMD_IPM_PRESENT_MEDIA

WFS_CMD_CIM_RETRACT WFS_CMD_IPM_RETRACT_MEDIA

CWA 16374-15:2011 (E)

134

Events and their Counterparts

The CIM and IPM interfaces both have a range of events to inform the application of device activity. During Mixed
Media processing events fired from each interface can describe the same situation (i.e. items presented). In these
cases the recommendation to application developers is to rely on a single interface for these duplicate notifications.
The choice of which interface to use to handle specific events will be based on factors such as current codebase or
application presentation requirements.

CIM Event IPM Event

WFS_USRE_CIM_CASHUNITTHRESHOLD WFS_USRE_IPM_MEDIABINTHRESHOLD

WFS_SRVE_CIM_CASHUNITINFOCHANGED WFS_SRVE_IPM_MEDIABININFOCHANGED

WFS_EXEE_CIM_CASHUNITERROR WFS_EXEE_IPM_MEDIABINERROR

WFS_SRVE_CIM_ITEMSTAKEN WFS_SRVE_IPM_MEDIATAKEN

WFS_SRVE_CIM_COUNTS_CHANGED WFS_SRVE_IPM_MEDIABININFOCHANGED

WFS_EXEE_CIM_INPUTREFUSE WFS_EXEE_IPM_MEDIAREFUSED

WFS_SRVE_CIM_ITEMSPRESENTED WFS_EXEE_IPM_MEDIAPRESENTED

WFS_SRVE_CIM_ITEMSINSERTED WFS_EXEE_IPM_MEDIAINSERTED

WFS_EXEE_CIM_SUBCASHIN WFS_EXEE_IPM_MEDIADATA

WFS_SRVE_CIM_MEDIADETECTED WFS_SRVE_IPM_MEDIADETECTED

WFS_EXEE_CIM_INSERTITEMS WFS_EXEE_IPM_NOMEDIA

WFS_SRVE_CIM_DEVICEPOSITION WFS_SRVE_IPM_DEVICEPOSITION

WFS_SRVE_CIM_POWER_SAVE_CHANGE WFS_SRVE_IPM_POWER_SAVE_CHANGE

The following sections describe the flow of a Mixed Media transaction on a compound CIM/IPM device. These
application flows are provided as guidelines only. In all cases WFSCIMPOSCAPS.bPresentControl == TRUE
unless otherwise stated.

CWA 16374-15:2011 (E)

135

9.1 Mixed Media OK Transaction

The following table describes a normal Mixed Media transaction flow where there is a successful deposit.

This flow covers the following case:

• bShutterControl == TRUE, wMixedMode == WFS_CIM_IPMMIXEDMEDIA

Step Application/Customer CIM Commands and Events IPM Commands and Events
1. Application transaction

opens sessions with both
the CIM and the IPM
service providers.

2. Customer selects Mixed
Media transaction.

WFS_CMD_CIM_CASH_IN_START

3. WFS_CMD_CIM_CASH_IN
(The shutter is not opened until
WFS_CMD_IPM_MEDIA_IN
called.)

WFS_CMD_IPM_MEDIA_IN
(Service Provider opens the input
shutter).

4. WFS_EXEE_CIM_INSERTITEMS
event is sent when the shutter is fully
open and the device is ready to begin
accepting items.

WFS_EXEE_IPM_NOMEDIA
This event specifies that media must be
inserted into the device in order for the
execute command to proceed.

5. Ask the customer to insert
items.

6. Customer inserts items.
7. WFS_SRVE_CIM_ITEMSINSERTED WFS_EXEE_IPM_MEDIA-

INSERTED
8. The Service Provider closes the input

shutter and the device begins
processing the inserted items.

Send one
WFS_EXEE_IPM_MEDIADATA
event for every check item identified.

9. The WFS_CMD_CIM_CASH_IN
command completes.

The WFS_CMD_IPM_MEDIA_IN
command completes.

10. WFS_INF_CIM_CASH_IN_STATUS
can be issued to request the number of
CIM related items that were inserted.

WFS_INF_IPM_TRANSACTION_-
STATUS is issued to request the
number of IPM related items that were
inserted.

11. Display the items
recognized and associated
information so far.

 Process the checks by sending any of:
WFS_CMD_IPM_READ_IMAGE,
WFS_CMD_IPM_SET_-
DESTINATION,
WFS_CMD_IPM_PRINT_TEXT,
WFS_CMD_IPM_GET_IMAGE_-
AFTER_PRINT

12. Ask the customer for
further actions:

If he wants to insert more
items:
Repeat from step 3.

If he wants to finish the
transaction:
Continue with step 13.

If he wants to get back all
items inserted so far see
table "Cancellation by
Customer".

CWA 16374-15:2011 (E)

136

13. WFS_CMD_CIM_CASH_IN_END
(The device will not complete the
media movement until
WFS_CMD_IPM_MEDIA_IN_END
command is called on IPM interface.)

WFS_CMD_IPM_MEDIA_IN_END
Print on individual media items (as
specified from IPM commands)..

14. Transport the items into the specified
destinations.

15. WFS_CMD_CIM_CASH_IN_END
completes.

WFS_CMD_IPM_MEDIA_IN_END
completes. Output parameter indicates
media bin / outputs positions that have
received items.

16. Credit the appropriate
funds to the customer's
account.

17. End of transaction.

CWA 16374-15:2011 (E)

137

9.2 Mixed Media Cancellation by Customer

The following table describes the flow of a Mixed Media transaction where the customer wants all the items to be
returned. In this case the returned items must be explicitly presented by the application.

This flow covers the following cases:

• bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE

• bCompound == TRUE, wMixedMode == WFS_CIM_IPMMIXEDMEDIA

• WFSCIMPOSCAPS.bPresentControl == FALSE

Step Customer/

Application
CIM Commands and Events IPM Commands and Events

1.-
12.

As per OK
Transaction.

13. Selection: Return all
the items.

14. Transport the items
recognized to the
output position.

WFS_CMD_CIM_CASH_IN_-
ROLLBACK (No physical action may
take place until the WFS_CMD_IPM_-
MEDIA_IN_ROLLBACK command.)

WFS_CMD_IPM_MEDIA_IN_-
ROLLBACK

15. WFS_CMD_CIM_CASH_IN_-
ROLLBACK completion.

WFS_CMD_IPM_MEDIA_IN_-
ROLLBACK completion.

16. WFS_CMD_CIM_PRESENT_MEDIA
(No physical action may take place until
the
WFS_CMD_IPM_PRESENT_MEDIA
command.)

WFS_CMD_IPM_PRESENT_MEDIA

17. The Service Provider opens the shutter(s).
CIM cash moves to output position.

IPM media moves to output position.

18. Request removal of
the items.

WFS_SRVE_CIM_ITEMSPRESENTED
fired.

WFS_EXEE_IPM_MEDIA-
PRESENTED fired.

19. WFS_CMD_CIM_PRESENT_MEDIA
completes.

WFS_CMD_IPM_PRESENT_MEDIA
completes.

20. Customer takes the
items from the output
position.

21. WFS_SRVE_CIM_ITEMSTAKEN WFS_SRVE_IPM_MEDIATAKEN
22. The Service Provider closes the shutter.
23. End of transaction.

CWA 16374-15:2011 (E)

138

9.3 Mixed Media Cancellation by Customer on Cash Part Only

The following table describes the flow of a Mixed Media transaction where the customer wants the cash items to be
returned but deposit the check items. In this case the returned items are implicitly presented by the Service
Provider.

This flow covers the following cases:

• bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE

• wMixedMode == WFS_CIM_IPMMIXEDMEDIA

• WFSCIMPOSCAPS.bPresentControl == TRUE

Step Customer/

Application
CIM Commands and Events IPM Commands and Events

1.-
12.

As per OK transaction

13. Selection: return cash
items.

14. Transport the items
recognized to the
output position.

WFS_CMD_CIM_CASH_IN_-
ROLLBACK (No physical action may
take place until the
WFS_CMD_IPM_MEDIA_IN_END
command.)

WFS_CMD_IPM_MEDIA_IN_END

15. Print on, and deposit individual media
items (as specified by IPM commands).

16. The Service Provider opens the shutter.
CIM cash moves to output position.

17. Request removal of
the cash items.

WFS_SRVE_CIM_ITEMSPRESENTED
fired.

WFS_EXEE_IPM_MEDIA-
PRESENTED fired.

18. WFS_CMD_CIM_CASH_IN_-
ROLLBACK completes.

WFS_CMD_IPM_MEDIA_IN_END
completes.

19. Customer takes the
cash items from the
output position.

20. WFS_SRVE_CIM_ITEMSTAKEN
The Service Provider closes the shutter.

WFS_SRVE_IPM_MEDIATAKEN

21. End of transaction.

CWA 16374-15:2011 (E)

139

9.4 Mixed Media Multiple Refused Items

The following table describes the flow of a Mixed Media transaction where items are rejected during the
transaction. Additionally, the number of items refused may be greater than the number of items that can be
presented at the output position. In this case the returned items must be explicitly presented by the application.

This flow covers the following cases:

• bShutterControl == TRUE, bItemsInsertedSensor == TRUE, bItemsTakenSensor == TRUE

• bCompound == TRUE, wMixedMode == WFS_CIM_IPMMIXEDMEDIA

• WFSCIMPOSCAPS.bPresentControl == FALSE

Step Application/

Customer
CIM Commands and Events IPM Commands and Events

1. Customer selects
Mixed Media
transaction.

WFS_CMD_CIM_CASH_IN_START

2. WFS_CMD_CIM_CASH_IN
(The shutter is not opened until
WFS_CMD_IPM_MEDIA_IN
called.)

WFS_CMD_IPM_MEDIA_IN
Service Provider opens the input shutter.

3. WFS_EXEE_CIM_INSERTITEMS
event is sent when the shutter is fully
open and the device is ready to begin
accepting items.

WFS_EXEE_IPM_NOMEDIA
This event specifies that media must be
inserted into the device in order for the
execute command to proceed.

4. Ask the customer to
insert items.

5. Customer inserts
items.

6. WFS_SRVE_CIM_ITEMSINSERTED WFS_EXEE_IPM_MEDIAINSERTED
7. The Service Provider closes the input

shutter and the device begins processing
the inserted items.

Send one
WFS_EXEE_IPM_MEDIADATA event
for every check item identified.

8. Items are refused. WFS_EXEE_CIM_INPUTREFUSE
event sent with appropriate lpusReason
parameter.
Items that are not bills or checks are
rejected with
WFS_CIM_INVALIDBILL.

WFS_EXEE_IPM_MEDIAREFUSED

9. The WFS_CMD_CIM_CASH_IN
command completes.

WFS_CMD_IPM_MEDIA_IN
command completes.

10. Application chooses
to return refused
items now.

WFS_CMD_CIM_PRESENT_MEDIA
(No physical action may take place until
the
WFS_CMD_IPM_PRESENT_MEDIA
command.)

WFS_CMD_IPM_PRESENT_MEDIA

11. Each bunch of items
presented.

WFS_SRVE_CIM_ITEMSPRESENTED WFS_EXEE_IPM_MEDIAPRESENTED

12. All but last bunch of
items taken.

WFS_SRVE_CIM_ITEMSTAKEN WFS_SRVE_IPM_MEDIATAKEN

13. WFS_CMD_CIM_PRESENT_MEDIA
command completes.

WFS_CMD_IPM_PRESENT_MEDIA
command completes.

14. Last bunch of items
taken.

WFS_SRVE_CIM_ITEMSTAKEN WFS_SRVE_IPM_MEDIATAKEN

15. Transaction
continues from step
13. in the OK
transaction.

CWA 16374-15:2011 (E)

140

10. Rules for Cash Unit Exchange

The XFS Start and End Exchange commands should be used by applications to supply the latest information with
regards to cash unit replenishment state and content. This guarantees a certain amount of control to an application
as to which denominations are stored in which position as well as the general physical state of the logical/physical
cash units.

If a cash unit is removed from the CIM outside of the Start/End Exchange operations and subsequently reinserted
the status of the physical cash unit should be set to WFS_CIM_STATCUMANIP to indicate to the application that
the physical cash unit has been removed, reinserted and possibly tampered with. While the cash unit has this status
the Service Provider should not attempt to use it as part of a cash-in operation. The WFS_CIM_STATCUMANIP
status should not change until the next Start/End Exchange operation is performed, even if the cash unit is replaced
in its original position.

If all the physical cash units belonging to a logical cash unit are manipulated the parent logical cash unit that the
physical cash units belong to should also have its status set to WFS_CIM_STATCUMANIP.

When a cash unit is removed and/or replaced outside of the Start/End Exchange operations the original logical cash
unit information such as the values, currency and counts should be preserved in the Cash Unit Info structure
reported to the application for accounting purposes until the next Start/End Exchange operations, even if the cash
unit physically contains a different denomination.

Mixed Media Processing:

Where the device supports cash units that can store non-CIM items, a counters update to those cash units applied by
the CIM interface can also be seen in the other interfaces available to the compound device.

The CIM ulCount on a shared bin (of type WFS_CIM_TYPECASHIN) reports the total number of banknotes,
checks or coins of all types in the cash unit. This is for the following reasons:

1. ulCount on CIM has the same meaning as ulCount on IPM. That is the number of items of any type in the bin.

2. ulMaximum, is truly representative of the capacity of the physical bin and software thresholds can accurately
reflect the state of the bin.

3. Use of ulCount representing items from both interfaces gives the greatest flexibility. Dedicated CIM or IPM bins
and therefore counts can still be achieved through bin configuration.

4. The actual number of notes can be determined from lpNoteNumberList.

The following table describes the effect on the IPM counts where an application causes counter changes to a shared
cassette using the CIM interface. The example assumes the starting position of a shared CIM cash unit/IPM media
bin:

From WFSCIMCASHIN:
fwType = WFS_CIM_TYPECASHIN
fwItemType = WFS_CIM_CITYPALL|WFS_CIM_CITYPIPM
ulCashInCount = 0
ulCount = 0

And the IPM starting position for the shared CIM cash unit/IPM media bin:

From WFSIPMMEDIABIN:
fwType = WFS_IPM_TYPEMEDIAIN
wMediaType = WFS_IPM_MEDIATYPCOMPOUND
ulMediaInCount = 0
ulCount = 0

 Application Activity CIM Counts on the shared
cash unit

IPM Counts on the
shared media bin

1. A customer enters 10 good notes and 10 good
checks in the same transaction.

ulCashInCount = 10
ulCount = 20

ulMediaInCount = 10
ulCount = 20

2. Replenishment activity removes all items from
the cash unit and clears the counts using
WFS_CMD_CIM_END_EXCHANGE

ulCashInCount = 0
ulCount = 0

ulMediaInCount = 0
ulCount = 0

CWA 16374-15:2011 (E)

141

3. A further customer enters 10 good notes and 10
good checks in the same transaction.

ulCashInCount = 10
ulCount = 20

ulMediaInCount = 10
ulCount = 20

4. Replenishment activity removes only cash
items from the cash unit. The CIM counts are
adjusted using
WFS_CMD_CIM_SET_CASH_UNIT_INFO

ulCashInCount is set to 0, and ulCount is set to
10

ulCashInCount = 0
ulCount = 10

ulMediaInCount = 10
ulCount = 10

5. A further customer enters 10 good notes and 10
good checks in the same transaction.

ulCashInCount = 10
ulCount = 30

ulMediaInCount = 20
ulCount = 30

6. Replenishment activity removes only checks
(20 items) from the cash unit. The counts are
adjusted using
WFS_CMD_IPM_SET_MEDIA_BIN_INFO.

ulMediaInCount is set to 0, and ulCount is set
to 10

ulCashInCount = 10
ulCount = 10

ulMediaInCount = 0
ulCount = 10

CWA 16374-15:2011 (E)

142

11. C - Header file

/**
* *
* xfscim.h XFS - Cash Acceptor (CIM) definitions *
* *
* Version 3.20 (March 02 2011) *
* *
**/

#ifndef __INC_XFSCIM__H
#define __INC_XFSCIM__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack (push, 1)

/* values of WFSCIMCAPS.wClass */

#define WFS_SERVICE_CLASS_CIM (13)
#define WFS_SERVICE_CLASS_VERSION_CIM (0x1403) /* Version 3.20 */
#define WFS_SERVICE_CLASS_NAME_CIM "CIM"

#define CIM_SERVICE_OFFSET (WFS_SERVICE_CLASS_CIM * 100)

/* CIM Info Commands */

#define WFS_INF_CIM_STATUS (CIM_SERVICE_OFFSET + 1)
#define WFS_INF_CIM_CAPABILITIES (CIM_SERVICE_OFFSET + 2)
#define WFS_INF_CIM_CASH_UNIT_INFO (CIM_SERVICE_OFFSET + 3)
#define WFS_INF_CIM_TELLER_INFO (CIM_SERVICE_OFFSET + 4)
#define WFS_INF_CIM_CURRENCY_EXP (CIM_SERVICE_OFFSET + 5)
#define WFS_INF_CIM_BANKNOTE_TYPES (CIM_SERVICE_OFFSET + 6)
#define WFS_INF_CIM_CASH_IN_STATUS (CIM_SERVICE_OFFSET + 7)
#define WFS_INF_CIM_GET_P6_INFO (CIM_SERVICE_OFFSET + 8)
#define WFS_INF_CIM_GET_P6_SIGNATURE (CIM_SERVICE_OFFSET + 9)
#define WFS_INF_CIM_GET_ITEM_INFO (CIM_SERVICE_OFFSET + 10)
#define WFS_INF_CIM_POSITION_CAPABILITIES (CIM_SERVICE_OFFSET + 11)
#define WFS_INF_CIM_REPLENISH_TARGET (CIM_SERVICE_OFFSET + 12)
#define WFS_INF_CIM_DEVICELOCK_STATUS (CIM_SERVICE_OFFSET + 13)
#define WFS_INF_CIM_CASH_UNIT_CAPABILITIES (CIM_SERVICE_OFFSET + 14)

/* CIM Execute Commands */

#define WFS_CMD_CIM_CASH_IN_START (CIM_SERVICE_OFFSET + 1)
#define WFS_CMD_CIM_CASH_IN (CIM_SERVICE_OFFSET + 2)
#define WFS_CMD_CIM_CASH_IN_END (CIM_SERVICE_OFFSET + 3)
#define WFS_CMD_CIM_CASH_IN_ROLLBACK (CIM_SERVICE_OFFSET + 4)
#define WFS_CMD_CIM_RETRACT (CIM_SERVICE_OFFSET + 5)
#define WFS_CMD_CIM_OPEN_SHUTTER (CIM_SERVICE_OFFSET + 6)
#define WFS_CMD_CIM_CLOSE_SHUTTER (CIM_SERVICE_OFFSET + 7)
#define WFS_CMD_CIM_SET_TELLER_INFO (CIM_SERVICE_OFFSET + 8)
#define WFS_CMD_CIM_SET_CASH_UNIT_INFO (CIM_SERVICE_OFFSET + 9)
#define WFS_CMD_CIM_START_EXCHANGE (CIM_SERVICE_OFFSET + 10)
#define WFS_CMD_CIM_END_EXCHANGE (CIM_SERVICE_OFFSET + 11)
#define WFS_CMD_CIM_OPEN_SAFE_DOOR (CIM_SERVICE_OFFSET + 12)
#define WFS_CMD_CIM_RESET (CIM_SERVICE_OFFSET + 13)
#define WFS_CMD_CIM_CONFIGURE_CASH_IN_UNITS (CIM_SERVICE_OFFSET + 14)
#define WFS_CMD_CIM_CONFIGURE_NOTETYPES (CIM_SERVICE_OFFSET + 15)
#define WFS_CMD_CIM_CREATE_P6_SIGNATURE (CIM_SERVICE_OFFSET + 16)
#define WFS_CMD_CIM_SET_GUIDANCE_LIGHT (CIM_SERVICE_OFFSET + 17)
#define WFS_CMD_CIM_CONFIGURE_NOTE_READER (CIM_SERVICE_OFFSET + 18)
#define WFS_CMD_CIM_COMPARE_P6_SIGNATURE (CIM_SERVICE_OFFSET + 19)
#define WFS_CMD_CIM_POWER_SAVE_CONTROL (CIM_SERVICE_OFFSET + 20)

CWA 16374-15:2011 (E)

143

#define WFS_CMD_CIM_REPLENISH (CIM_SERVICE_OFFSET + 21)
#define WFS_CMD_CIM_SET_CASH_IN_LIMIT (CIM_SERVICE_OFFSET + 22)
#define WFS_CMD_CIM_CASH_UNIT_COUNT (CIM_SERVICE_OFFSET + 23)
#define WFS_CMD_CIM_DEVICE_LOCK_CONTROL (CIM_SERVICE_OFFSET + 24)
#define WFS_CMD_CIM_SET_MODE (CIM_SERVICE_OFFSET + 25)
#define WFS_CMD_CIM_PRESENT_MEDIA (CIM_SERVICE_OFFSET + 26)

/* CIM Messages */

#define WFS_SRVE_CIM_SAFEDOOROPEN (CIM_SERVICE_OFFSET + 1)
#define WFS_SRVE_CIM_SAFEDOORCLOSED (CIM_SERVICE_OFFSET + 2)
#define WFS_USRE_CIM_CASHUNITTHRESHOLD (CIM_SERVICE_OFFSET + 3)
#define WFS_SRVE_CIM_CASHUNITINFOCHANGED (CIM_SERVICE_OFFSET + 4)
#define WFS_SRVE_CIM_TELLERINFOCHANGED (CIM_SERVICE_OFFSET + 5)
#define WFS_EXEE_CIM_CASHUNITERROR (CIM_SERVICE_OFFSET + 6)
#define WFS_SRVE_CIM_ITEMSTAKEN (CIM_SERVICE_OFFSET + 7)
#define WFS_SRVE_CIM_COUNTS_CHANGED (CIM_SERVICE_OFFSET + 8)
#define WFS_EXEE_CIM_INPUTREFUSE (CIM_SERVICE_OFFSET + 9)
#define WFS_SRVE_CIM_ITEMSPRESENTED (CIM_SERVICE_OFFSET + 10)
#define WFS_SRVE_CIM_ITEMSINSERTED (CIM_SERVICE_OFFSET + 11)
#define WFS_EXEE_CIM_NOTEERROR (CIM_SERVICE_OFFSET + 12)
#define WFS_EXEE_CIM_SUBCASHIN (CIM_SERVICE_OFFSET + 13)
#define WFS_SRVE_CIM_MEDIADETECTED (CIM_SERVICE_OFFSET + 14)
#define WFS_EXEE_CIM_INPUT_P6 (CIM_SERVICE_OFFSET + 15)
#define WFS_EXEE_CIM_INFO_AVAILABLE (CIM_SERVICE_OFFSET + 16)
#define WFS_EXEE_CIM_INSERTITEMS (CIM_SERVICE_OFFSET + 17)
#define WFS_SRVE_CIM_DEVICEPOSITION (CIM_SERVICE_OFFSET + 18)
#define WFS_SRVE_CIM_POWER_SAVE_CHANGE (CIM_SERVICE_OFFSET + 19)
#define WFS_EXEE_CIM_INCOMPLETEREPLENISH (CIM_SERVICE_OFFSET + 20)

/* values of WFSCIMSTATUS.fwDevice */

#define WFS_CIM_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_CIM_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_CIM_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_CIM_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_CIM_DEVUSERERROR WFS_STAT_DEVUSERERROR
#define WFS_CIM_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_CIM_DEVBUSY WFS_STAT_DEVBUSY
#define WFS_CIM_DEVFRAUDATTEMPT WFS_STAT_DEVFRAUDATTEMPT
#define WFS_CIM_DEVPOTENTIALFRAUD WFS_STAT_DEVPOTENTIALFRAUD

/* values of WFSCIMSTATUS.fwSafeDoor */

#define WFS_CIM_DOORNOTSUPPORTED (1)
#define WFS_CIM_DOOROPEN (2)
#define WFS_CIM_DOORCLOSED (3)
#define WFS_CIM_DOORUNKNOWN (4)

/* values of WFSCIMSTATUS.fwAcceptor */

#define WFS_CIM_ACCOK (0)
#define WFS_CIM_ACCCUSTATE (1)
#define WFS_CIM_ACCCUSTOP (2)
#define WFS_CIM_ACCCUUNKNOWN (3)

/* values of WFSCIMSTATUS.fwIntermediateStacker */

#define WFS_CIM_ISEMPTY (0)
#define WFS_CIM_ISNOTEMPTY (1)
#define WFS_CIM_ISFULL (2)
#define WFS_CIM_ISUNKNOWN (4)
#define WFS_CIM_ISNOTSUPPORTED (5)

/* Size and max index of dwGuidLights array */
#define WFS_CIM_GUIDLIGHTS_SIZE (32)
#define WFS_CIM_GUIDLIGHTS_MAX (WFS_CIM_GUIDLIGHTS_SIZE - 1)

/* Indices of WFSCIMSTATUS.dwGuidLights [...]
 WFSCIMCAPS.dwGuidLights [...]

CWA 16374-15:2011 (E)

144

*/

#define WFS_CIM_GUIDANCE_POSINNULL (0)
#define WFS_CIM_GUIDANCE_POSINLEFT (1)
#define WFS_CIM_GUIDANCE_POSINRIGHT (2)
#define WFS_CIM_GUIDANCE_POSINCENTER (3)
#define WFS_CIM_GUIDANCE_POSINTOP (4)
#define WFS_CIM_GUIDANCE_POSINBOTTOM (5)
#define WFS_CIM_GUIDANCE_POSINFRONT (6)
#define WFS_CIM_GUIDANCE_POSINREAR (7)
#define WFS_CIM_GUIDANCE_POSOUTLEFT (8)
#define WFS_CIM_GUIDANCE_POSOUTRIGHT (9)
#define WFS_CIM_GUIDANCE_POSOUTCENTER (10)
#define WFS_CIM_GUIDANCE_POSOUTTOP (11)
#define WFS_CIM_GUIDANCE_POSOUTBOTTOM (12)
#define WFS_CIM_GUIDANCE_POSOUTFRONT (13)
#define WFS_CIM_GUIDANCE_POSOUTREAR (14)
#define WFS_CIM_GUIDANCE_POSOUTNULL (15)

/* Values of WFSCIMSTATUS.dwGuidLights [...]
 WFSCIMCAPS.dwGuidLights [...]
*/

#define WFS_CIM_GUIDANCE_NOT_AVAILABLE (0x00000000)
#define WFS_CIM_GUIDANCE_OFF (0x00000001)
#define WFS_CIM_GUIDANCE_SLOW_FLASH (0x00000004)
#define WFS_CIM_GUIDANCE_MEDIUM_FLASH (0x00000008)
#define WFS_CIM_GUIDANCE_QUICK_FLASH (0x00000010)
#define WFS_CIM_GUIDANCE_CONTINUOUS (0x00000080)
#define WFS_CIM_GUIDANCE_RED (0x00000100)
#define WFS_CIM_GUIDANCE_GREEN (0x00000200)
#define WFS_CIM_GUIDANCE_YELLOW (0x00000400)
#define WFS_CIM_GUIDANCE_BLUE (0x00000800)
#define WFS_CIM_GUIDANCE_CYAN (0x00001000)
#define WFS_CIM_GUIDANCE_MAGENTA (0x00002000)
#define WFS_CIM_GUIDANCE_WHITE (0x00004000)

/* values of WFSCIMSTATUS.wDevicePosition
 WFSCIMDEVICEPOSITION.wPosition */

#define WFS_CIM_DEVICEINPOSITION (0)
#define WFS_CIM_DEVICENOTINPOSITION (1)
#define WFS_CIM_DEVICEPOSUNKNOWN (2)
#define WFS_CIM_DEVICEPOSNOTSUPP (3)

/* values of WFSCIMSTATUS.fwStackerItems */

#define WFS_CIM_CUSTOMERACCESS (0)
#define WFS_CIM_NOCUSTOMERACCESS (1)
#define WFS_CIM_ACCESSUNKNOWN (2)
#define WFS_CIM_NOITEMS (4)

/* values of WFSCIMSTATUS.fwBankNoteReader */

#define WFS_CIM_BNROK (0)
#define WFS_CIM_BNRINOP (1)
#define WFS_CIM_BNRUNKNOWN (2)
#define WFS_CIM_BNRNOTSUPPORTED (3)

/* values of WFSCIMSTATUS.fwShutter */

#define WFS_CIM_SHTCLOSED (0)
#define WFS_CIM_SHTOPEN (1)
#define WFS_CIM_SHTJAMMED (2)
#define WFS_CIM_SHTUNKNOWN (3)
#define WFS_CIM_SHTNOTSUPPORTED (4)

/* values of WFSCIMCAPS.wMixedMode */

#define WFS_CIM_MIXEDMEDIANOTSUPP (0)

CWA 16374-15:2011 (E)

145

#define WFS_CIM_IPMMIXEDMEDIA (1)

/* values of WFSCIMSETMODE.wMixedMode */
/* values of WFSCIMSTATUS.wMixedMode.*/

#define WFS_CIM_MIXEDMEDIANOTACTIVE (0)

/* values of WFSCIMINPOS.fwPositionStatus */

#define WFS_CIM_PSEMPTY (0)
#define WFS_CIM_PSNOTEMPTY (1)
#define WFS_CIM_PSUNKNOWN (2)
#define WFS_CIM_PSNOTSUPPORTED (3)
#define WFS_CIM_PSFOREIGNITEMS (4)

/* values of WFSCIMSTATUS.fwTransport */

#define WFS_CIM_TPOK (0)
#define WFS_CIM_TPINOP (1)
#define WFS_CIM_TPUNKNOWN (2)
#define WFS_CIM_TPNOTSUPPORTED (3)

/* values of WFSCIMINPOS.fwTransportStatus */

#define WFS_CIM_TPSTATEMPTY (0)
#define WFS_CIM_TPSTATNOTEMPTY (1)
#define WFS_CIM_TPSTATNOTEMPTYCUST (2)
#define WFS_CIM_TPSTATNOTEMPTY_UNK (3)
#define WFS_CIM_TPSTATNOTSUPPORTED (4)

/* values of WFSCIMCAPS.fwType */

#define WFS_CIM_TELLERBILL (0)
#define WFS_CIM_SELFSERVICEBILL (1)
#define WFS_CIM_TELLERCOIN (2)
#define WFS_CIM_SELFSERVICECOIN (3)

/* values of WFSCIMCAPS.fwExchangeType */
/* values of WFSCIMSTARTEX.fwExchangeType */

#define WFS_CIM_EXBYHAND (0x0001)
#define WFS_CIM_EXTOCASSETTES (0x0002)
#define WFS_CIM_CLEARRECYCLER (0x0004)
#define WFS_CIM_DEPOSITINTO (0x0008)

/* values of WFSCIMCAPS.fwRetractTransportActions */
/* values of WFSCIMCAPS.fwRetractStackerActions */

#define WFS_CIM_PRESENT (0x0001)
#define WFS_CIM_RETRACT (0x0002)
#define WFS_CIM_NOTSUPP (0x0004)
#define WFS_CIM_REJECT (0x0008)
#define WFS_CIM_BILLCASSETTES (0x0010)

/* values for WFSCIMCAPS.fwCashInLimit */

#define WFS_CIM_LIMITNOTSUPP (0x0000)
#define WFS_CIM_LIMITBYTOTALITEMS (0x0001)
#define WFS_CIM_LIMITBYAMOUNT (0x0002)

/* values of WFSCIMCASHIN.fwType */

#define WFS_CIM_TYPERECYCLING (1)
#define WFS_CIM_TYPECASHIN (2)
#define WFS_CIM_TYPEREPCONTAINER (3)
#define WFS_CIM_TYPERETRACTCASSETTE (4)
#define WFS_CIM_TYPEREJECT (5)
#define WFS_CIM_TYPECDMSPECIFIC (6)

/* values of WFSCIMCASHIN.fwItemType */

CWA 16374-15:2011 (E)

146

/* values of WFSCIMCASHINTYPE.dwType */

#define WFS_CIM_CITYPALL (0x0001)
#define WFS_CIM_CITYPUNFIT (0x0002)
#define WFS_CIM_CITYPINDIVIDUAL (0x0004)
#define WFS_CIM_CITYPLEVEL3 (0x0008)
#define WFS_CIM_CITYPLEVEL2 (0x0010)
#define WFS_CIM_CITYPIPM (0x0020)

/* values of WFSCIMCASHIN.usStatus */
/* values of WFSCIMPHCU.usPStatus */

#define WFS_CIM_STATCUOK (0)
#define WFS_CIM_STATCUFULL (1)
#define WFS_CIM_STATCUHIGH (2)
#define WFS_CIM_STATCULOW (3)
#define WFS_CIM_STATCUEMPTY (4)
#define WFS_CIM_STATCUINOP (5)
#define WFS_CIM_STATCUMISSING (6)
#define WFS_CIM_STATCUNOVAL (7)
#define WFS_CIM_STATCUNOREF (8) /* NOTE: Not used in CIM */
#define WFS_CIM_STATCUMANIP (9)

/* values of WFSCIMSTATUS.fwPositions */
/* values of WFSCIMCAPS.fwPositions */
/* values of WFSCIMINPOS.fwPosition */
/* values of WFSCIMTELLERDETAILS.fwInputPosition */
/* values of WFSCIMCASHINSTART.fwInputPosition */

#define WFS_CIM_POSNULL (0x0000)
#define WFS_CIM_POSINLEFT (0x0001)
#define WFS_CIM_POSINRIGHT (0x0002)
#define WFS_CIM_POSINCENTER (0x0004)
#define WFS_CIM_POSINTOP (0x0008)
#define WFS_CIM_POSINBOTTOM (0x0010)
#define WFS_CIM_POSINFRONT (0x0020)
#define WFS_CIM_POSINREAR (0x0040)

/* values of WFSCIMSTATUS.fwPositions */
/* values of WFSCIMCAPS.fwPositions */
/* values of WFSCIMTELLERDETAILS.fwOutputPosition */
/* values of WFSCIMCASHINSTART.fwOutputPosition */
/* values of WFSCIMOUTPUT.fwPosition */

#define WFS_CIM_POSOUTLEFT (0x0080)
#define WFS_CIM_POSOUTRIGHT (0x0100)
#define WFS_CIM_POSOUTCENTER (0x0200)
#define WFS_CIM_POSOUTTOP (0x0400)
#define WFS_CIM_POSOUTBOTTOM (0x0800)
#define WFS_CIM_POSOUTFRONT (0x1000)
#define WFS_CIM_POSOUTREAR (0x2000)

/* values of WFSCIMCASHINSTATUS.wStatus */

#define WFS_CIM_CIOK (0)
#define WFS_CIM_CIROLLBACK (1)
#define WFS_CIM_CIACTIVE (2)
#define WFS_CIM_CIRETRACT (3)
#define WFS_CIM_CIUNKNOWN (4)
#define WFS_CIM_CIRESET (5)

/* values of WFSCIMCAPS.fwRetractAreas */
/* values of WFSCIMRETRACT.usRetractArea */

#define WFS_CIM_RA_RETRACT (0x0001)
#define WFS_CIM_RA_TRANSPORT (0x0002)
#define WFS_CIM_RA_STACKER (0x0004)
#define WFS_CIM_RA_BILLCASSETTES (0x0008)
#define WFS_CIM_RA_NOTSUPP (0x0010)
#define WFS_CIM_RA_REJECT (0x0020)

CWA 16374-15:2011 (E)

147

/* values of WFSCIMP6INFO.usLevel */
/* values of WFSCIMP6SIGNATURE.usLevel */

#define WFS_CIM_LEVEL_2 (2)
#define WFS_CIM_LEVEL_3 (3)
#define WFS_CIM_LEVEL_4 (4)

/* values of WFSCIMTELLERUPDATE.usAction */

#define WFS_CIM_CREATE_TELLER (1)
#define WFS_CIM_MODIFY_TELLER (2)
#define WFS_CIM_DELETE_TELLER (3)

/* values of WFSCIMCUERROR.wFailure */

#define WFS_CIM_CASHUNITEMPTY (1)
#define WFS_CIM_CASHUNITERROR (2)
#define WFS_CIM_CASHUNITFULL (3)
#define WFS_CIM_CASHUNITLOCKED (4)
#define WFS_CIM_CASHUNITNOTCONF (5)
#define WFS_CIM_CASHUNITINVALID (6)
#define WFS_CIM_CASHUNITCONFIG (7)
#define WFS_CIM_FEEDMODULEPROBLEM (8)
#define WFS_CIM_CASHUNITPHYSICALLOCKED (9)
#define WFS_CIM_CASHUNITPHYSICALUNLOCKED (10)

/*values of WFSCIMP6SIGNATURE.dwOrientation*/

#define WFS_CIM_ORFRONTTOP (1)
#define WFS_CIM_ORFRONTBOTTOM (2)
#define WFS_CIM_ORBACKTOP (3)
#define WFS_CIM_ORBACKBOTTOM (4)
#define WFS_CIM_ORUNKNOWN (5)
#define WFS_CIM_ORNOTSUPPORTED (6)

/* values for WFSCIMGETITEMINFO.wItemInfoType */
#define WFS_CIM_ITEM_SERIALNUMBER (0x00000001)
#define WFS_CIM_ITEM_SIGNATURE (0x00000002)

/* values of lpusReason in WFS_EXEE_CIM_INPUTREFUSE */

#define WFS_CIM_CASHINUNITFULL (1)
#define WFS_CIM_INVALIDBILL (2)
#define WFS_CIM_NOBILLSTODEPOSIT (3)
#define WFS_CIM_DEPOSITFAILURE (4)
#define WFS_CIM_COMMINPCOMPFAILURE (5)
#define WFS_CIM_STACKERFULL (6)
#define WFS_CIM_FOREIGN_ITEMS_DETECTED (7)
#define WFS_CIM_INVALIDBUNCH (8)
#define WFS_CIM_COUNTERFEIT (9)
#define WFS_CIM_LIMITOVERTOTALITEMS (10)
#define WFS_CIM_LIMITOVERAMOUNT (11)

/* values of lpusReason in WFS_EXEE_CIM_NOTESERROR */

#define WFS_CIM_DOUBLENOTEDETECTED (1)
#define WFS_CIM_LONGNOTEDETECTED (2)
#define WFS_CIM_SKEWEDNOTE (3)
#define WFS_CIM_INCORRECTCOUNT (4)
#define WFS_CIM_NOTESTOOCLOSE (5)
#define WFS_CIM_OTHERNOTEERROR (6)
#define WFS_CIM_SHORTNOTEDETECTED (7)

/* Values of fwUsage in WFS_INF_CIM_POSITION_CAPABILITIES */

#define WFS_CIM_POSIN (0x0001)
#define WFS_CIM_POSREFUSE (0x0002)
#define WFS_CIM_POSROLLBACK (0x0004)

CWA 16374-15:2011 (E)

148

/* values of WFSCIMPOSITIONINFO.wAdditionalBunches */

#define WFS_CIM_ADDBUNCHNONE (1)
#define WFS_CIM_ADDBUNCHONEMORE (2)
#define WFS_CIM_ADDBUNCHUNKNOWN (3)

/* values of WFSCIMPOSITIONINFO.usBunchesRemaining */

#define WFS_CIM_NUMBERUNKNOWN (255)

/* values of WFSCIMCAPS.fwCountActions */

#define WFS_CIM_COUNTNOTSUPP (0x0000)
#define WFS_CIM_COUNTINDIVIDUAL (0x0001)
#define WFS_CIM_COUNTALL (0x0002)

/* values of WFSCIMDEVICELOCKCONTROL.wDeviceAction */
/* values of WFSCIMDEVICELOCKCONTROL.wCashUnitAction */
/* values of WFSCIMUNITLOCKCONTROL.wUnitAction */

#define WFS_CIM_LOCK (1)
#define WFS_CIM_UNLOCK (2)
#define WFS_CIM_LOCKALL (3)
#define WFS_CIM_UNLOCKALL (4)
#define WFS_CIM_LOCKINDIVIDUAL (5)
#define WFS_CIM_NOLOCKACTION (6)
#define WFS_CIM_LOCKUNKNOWN (7)
#define WFS_CIM_LOCKNOTSUPPORTED (8)

/* values of WFSCIMSTATUS.wAntiFraudModule */

#define WFS_CIM_AFMNOTSUPP (0)
#define WFS_CIM_AFMOK (1)
#define WFS_CIM_AFMINOP (2)
#define WFS_CIM_AFMDEVICEDETECTED (3)
#define WFS_CIM_AFMUNKNOWN (4)

/* XFS CIM Errors */

#define WFS_ERR_CIM_INVALIDCURRENCY (-(CIM_SERVICE_OFFSET + 0))
#define WFS_ERR_CIM_INVALIDTELLERID (-(CIM_SERVICE_OFFSET + 1))
#define WFS_ERR_CIM_CASHUNITERROR (-(CIM_SERVICE_OFFSET + 2))
#define WFS_ERR_CIM_TOOMANYITEMS (-(CIM_SERVICE_OFFSET + 7))
#define WFS_ERR_CIM_UNSUPPOSITION (-(CIM_SERVICE_OFFSET + 8))
#define WFS_ERR_CIM_SAFEDOOROPEN (-(CIM_SERVICE_OFFSET + 10))
#define WFS_ERR_CIM_SHUTTERNOTOPEN (-(CIM_SERVICE_OFFSET + 12))
#define WFS_ERR_CIM_SHUTTEROPEN (-(CIM_SERVICE_OFFSET + 13))
#define WFS_ERR_CIM_SHUTTERCLOSED (-(CIM_SERVICE_OFFSET + 14))
#define WFS_ERR_CIM_INVALIDCASHUNIT (-(CIM_SERVICE_OFFSET + 15))
#define WFS_ERR_CIM_NOITEMS (-(CIM_SERVICE_OFFSET + 16))
#define WFS_ERR_CIM_EXCHANGEACTIVE (-(CIM_SERVICE_OFFSET + 17))
#define WFS_ERR_CIM_NOEXCHANGEACTIVE (-(CIM_SERVICE_OFFSET + 18))
#define WFS_ERR_CIM_SHUTTERNOTCLOSED (-(CIM_SERVICE_OFFSET + 19))
#define WFS_ERR_CIM_ITEMSTAKEN (-(CIM_SERVICE_OFFSET + 23))
#define WFS_ERR_CIM_CASHINACTIVE (-(CIM_SERVICE_OFFSET + 25))
#define WFS_ERR_CIM_NOCASHINACTIVE (-(CIM_SERVICE_OFFSET + 26))
#define WFS_ERR_CIM_POSITION_NOT_EMPTY (-(CIM_SERVICE_OFFSET + 28))
#define WFS_ERR_CIM_INVALIDRETRACTPOSITION (-(CIM_SERVICE_OFFSET + 34))
#define WFS_ERR_CIM_NOTRETRACTAREA (-(CIM_SERVICE_OFFSET + 35))
#define WFS_ERR_CIM_INVALID_PORT (-(CIM_SERVICE_OFFSET + 36))
#define WFS_ERR_CIM_FOREIGN_ITEMS_DETECTED (-(CIM_SERVICE_OFFSET + 37))
#define WFS_ERR_CIM_LOADFAILED (-(CIM_SERVICE_OFFSET + 38))
#define WFS_ERR_CIM_CASHUNITNOTEMPTY (-(CIM_SERVICE_OFFSET + 39))
#define WFS_ERR_CIM_INVALIDREFSIG (-(CIM_SERVICE_OFFSET + 40))
#define WFS_ERR_CIM_INVALIDTRNSIG (-(CIM_SERVICE_OFFSET + 41))
#define WFS_ERR_CIM_POWERSAVETOOSHORT (-(CIM_SERVICE_OFFSET + 42))
#define WFS_ERR_CIM_POWERSAVEMEDIAPRESENT (-(CIM_SERVICE_OFFSET + 43))
#define WFS_ERR_CIM_DEVICELOCKFAILURE (-(CIM_SERVICE_OFFSET + 44))
#define WFS_ERR_CIM_TOOMANYITEMSTOCOUNT (-(CIM_SERVICE_OFFSET + 45))
#define WFS_ERR_CIM_COUNTPOSNOTEMPTY (-(CIM_SERVICE_OFFSET + 46))

CWA 16374-15:2011 (E)

149

#define WFS_ERR_CIM_MEDIAINACTIVE (-(CIM_SERVICE_OFFSET + 47))

/*===*/
/* CIM Info Command Structures */
/*===*/

typedef struct _wfs_cim_inpos
{
 WORD fwPosition;
 WORD fwShutter;
 WORD fwPositionStatus;
 WORD fwTransport;
 WORD fwTransportStatus;
} WFSCIMINPOS, *LPWFSCIMINPOS;

typedef struct _wfs_cim_status
{
 WORD fwDevice;
 WORD fwSafeDoor;
 WORD fwAcceptor;
 WORD fwIntermediateStacker;
 WORD fwStackerItems;
 WORD fwBanknoteReader;
 BOOL bDropBox;
 LPWFSCIMINPOS *lppPositions;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CIM_GUIDLIGHTS_SIZE];
 WORD wDevicePosition;
 USHORT usPowerSaveRecoveryTime;
 WORD wMixedMode;
 WORD wAntiFraudModule;
} WFSCIMSTATUS, *LPWFSCIMSTATUS;

typedef struct _wfs_cim_caps
{
 WORD wClass;
 WORD fwType;
 WORD wMaxCashInItems;
 BOOL bCompound;
 BOOL bShutter;
 BOOL bShutterControl;
 BOOL bSafeDoor;
 BOOL bCashBox;
 BOOL bRefill;
 WORD fwIntermediateStacker;
 BOOL bItemsTakenSensor;
 BOOL bItemsInsertedSensor;
 WORD fwPositions;
 WORD fwExchangeType;
 WORD fwRetractAreas;
 WORD fwRetractTransportActions;
 WORD fwRetractStackerActions;
 LPSTR lpszExtra;
 DWORD dwGuidLights[WFS_CIM_GUIDLIGHTS_SIZE];
 DWORD dwItemInfoTypes;
 BOOL bCompareSignatures;
 BOOL bPowerSaveControl;
 BOOL bReplenish;
 WORD fwCashInLimit;
 WORD fwCountActions;
 BOOL bDeviceLockControl;
 WORD wMixedMode;
 BOOL bMixedDepositAndRollback;
 BOOL bAntiFraudModule;
} WFSCIMCAPS, *LPWFSCIMCAPS;

typedef struct _wfs_cim_physicalcu
{
 LPSTR lpPhysicalPositionName;
 CHAR cUnitID[5];

CWA 16374-15:2011 (E)

150

 ULONG ulCashInCount;
 ULONG ulCount;
 ULONG ulMaximum;
 USHORT usPStatus;
 BOOL bHardwareSensors;
 LPSTR lpszExtra;
 ULONG ulInitialCount;
 ULONG ulDispensedCount;
 ULONG ulPresentedCount;
 ULONG ulRetractedCount;
 ULONG ulRejectCount;
} WFSCIMPHCU, *LPWFSCIMPHCU;

typedef struct _wfs_cim_note_number
{
 USHORT usNoteID;
 ULONG ulCount;
} WFSCIMNOTENUMBER, *LPWFSCIMNOTENUMBER;

typedef struct _wfs_cim_note_number_list
{
 USHORT usNumOfNoteNumbers;
 LPWFSCIMNOTENUMBER *lppNoteNumber;
} WFSCIMNOTENUMBERLIST, *LPWFSCIMNOTENUMBERLIST;

typedef struct _wfs_cim_cash_in
{
 USHORT usNumber;
 DWORD fwType;
 DWORD fwItemType;
 CHAR cUnitID[5];
 CHAR cCurrencyID[3];
 ULONG ulValues;
 ULONG ulCashInCount;
 ULONG ulCount;
 ULONG ulMaximum;
 USHORT usStatus;
 BOOL bAppLock;
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
 USHORT usNumPhysicalCUs;
 LPWFSCIMPHCU *lppPhysical;
 LPSTR lpszExtra;
 LPUSHORT lpusNoteIDs;
 WORD usCDMType;
 LPSTR lpszCashUnitName;
 ULONG ulInitialCount;
 ULONG ulDispensedCount;
 ULONG ulPresentedCount;
 ULONG ulRetractedCount;
 ULONG ulRejectCount;
 ULONG ulMinimum;
} WFSCIMCASHIN, *LPWFSCIMCASHIN;

typedef struct _wfs_cim_cash_info
{
 USHORT usCount;
 LPWFSCIMCASHIN *lppCashIn;
} WFSCIMCASHINFO, *LPWFSCIMCASHINFO;

typedef struct _wfs_cim_teller_info
{
 USHORT usTellerID;
 CHAR cCurrencyID[3];
} WFSCIMTELLERINFO, *LPWFSCIMTELLERINFO;

typedef struct _wfs_cim_teller_totals
{
 CHAR cCurrencyID[3];
 ULONG ulItemsReceived;
 ULONG ulItemsDispensed;

CWA 16374-15:2011 (E)

151

 ULONG ulCoinsReceived;
 ULONG ulCoinsDispensed;
 ULONG ulCashBoxReceived;
 ULONG ulCashBoxDispensed;
} WFSCIMTELLERTOTALS, *LPWFSCIMTELLERTOTALS;

typedef struct _wfs_cim_teller_details
{
 USHORT usTellerID;
 WORD fwInputPosition;
 WORD fwOutputPosition;
 LPWFSCIMTELLERTOTALS *lppTellerTotals;
} WFSCIMTELLERDETAILS, *LPWFSCIMTELLERDETAILS;

typedef struct _wfs_cim_currency_exp
{
 CHAR cCurrencyID[3];
 SHORT sExponent;
} WFSCIMCURRENCYEXP, *LPWFSCIMCURRENCYEXP;

typedef struct _wfs_cim_note_type
{
 USHORT usNoteID;
 CHAR cCurrencyID[3];
 ULONG ulValues;
 USHORT usRelease;
 BOOL bConfigured;
} WFSCIMNOTETYPE, *LPWFSCIMNOTETYPE;

typedef struct _wfs_cim_note_type_list
{
 USHORT usNumOfNoteTypes;
 LPWFSCIMNOTETYPE *lppNoteTypes;
} WFSCIMNOTETYPELIST, *LPWFSCIMNOTETYPELIST;

typedef struct _wfs_cim_cash_in_status
{
 WORD wStatus;
 USHORT usNumOfRefused;
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
 LPSTR lpszExtra;
} WFSCIMCASHINSTATUS, *LPWFSCIMCASHINSTATUS;

typedef struct _wfs_cim_P6_info
{
 USHORT usLevel;
 LPWFSCIMNOTENUMBERLIST lpNoteNumberList;
 USHORT usNumOfSignatures;
} WFSCIMP6INFO, *LPWFSCIMP6INFO;

typedef struct _wfs_cim_get_P6_signature
{
 USHORT usLevel;
 USHORT usIndex;
} WFSCIMGETP6SIGNATURE, *LPWFSCIMGETP6SIGNATURE;

typedef struct _wfs_cim_P6_signature
{
 USHORT usNoteId;
 ULONG ulLength;
 DWORD dwOrientation;
 LPVOID lpSignature;
} WFSCIMP6SIGNATURE, *LPWFSCIMP6SIGNATURE;

typedef struct _wfs_cim_get_item_info
{
 USHORT usLevel;
 USHORT usIndex;
 DWORD dwItemInfoType;

CWA 16374-15:2011 (E)

152

} WFSCIMGETITEMINFO, *LPWFSCIMGETITEMINFO;

typedef struct _wfs_cim_item_info
{
 USHORT usNoteID;
 LPWSTR lpszSerialNumber;
 LPWFSCIMP6SIGNATURE lpP6Signature;
 } WFSCIMITEMINFO, *LPWFSCIMITEMINFO;

typedef struct _wfs_cim_item_info_summary
{
 USHORT usLevel;
 USHORT usNumOfItems;
} WFSCIMITEMINFOSUMMARY, *LPWFSCIMITEMINFOSUMMARY;

typedef struct _wfs_cim_pos_caps
{
 WORD fwPosition;
 WORD fwUsage;
 BOOL bShutterControl;
 BOOL bItemsTakenSensor;
 BOOL bItemsInsertedSensor;
 WORD fwRetractAreas;
 LPSTR lpszExtra;
 BOOL bPresentControl;
} WFSCIMPOSCAPS, *LPWFSCIMPOSCAPS;

typedef struct _wfs_cim_pos_capabilities
{
 LPWFSCIMPOSCAPS *lppPosCapabilities;
} WFSCIMPOSCAPABILITIES, *LPWFSCIMPOSCAPABILITIES;

typedef struct _wfs_cim_replenish_info
{
 USHORT usNumberSource;
} WFSCIMREPINFO, *LPWFSCIMREPINFO;

typedef struct _wfs_cim_replenish_info_target
{
 USHORT usNumberTarget;
} WFSCIMREPINFOTARGET, *LPWFSCIMREPINFOTARGET;

typedef struct _wfs_cim_replenish_info_result
{
 LPWFSCIMREPINFOTARGET *lppReplenishTargets;
} WFSCIMREPINFORES, *LPWFSCIMREPINFORES;

typedef struct _wfs_cim_cash_unit_lock
{
 LPSTR lpPhysicalPositionName;
 WORD wCashUnitLockStatus;
} WFSCIMCASHUNITLOCK, *LPWFSCIMCASHUNITLOCK;

typedef struct _wfs_cim_device_lock_status
{
 WORD wDeviceLockStatus;
 LPWFSCIMCASHUNITLOCK *lppCashUnitLock;
} WFSCIMDEVICELOCKSTATUS, *LPWFSCIMDEVICELOCKSTATUS;

typedef struct _wfs_cim_physicalcu_capabilities
{
 LPSTR lpPhysicalPositionName;
 ULONG ulMaximum;
 BOOL bHardwareSensors;
 LPSTR lpszExtra;
} WFSCIMPHCUCAPABILITIES, *LPWFSCIMPHCUCAPABILITIES;

typedef struct _wfs_cim_cash_unit_capabilities
{
 USHORT usNumber;

CWA 16374-15:2011 (E)

153

 USHORT usNumPhysicalCUs;
 LPWFSCIMPHCUCAPABILITIES *lppPhysical;
 BOOL bRetractNoteCountThresholds;
 LPSTR lpszExtra;
} WFSCIMCASHUNITCAPABILITIES, *LPWFSCIMCASHUNITCAPABILITIES;

typedef struct _wfs_cim_cash_caps
{
 USHORT usCount;
 LPWFSCIMCASHUNITCAPABILITIES *lppCashUnitCaps;
} WFSCIMCASHCAPABILITIES, *LPWFSCIMCASHCAPABILITIES;

/*===*/
/* CIM Execute Command Structures */
/*===*/

typedef struct _wfs_cim_cash_in_start
{
 USHORT usTellerID;
 BOOL bUseRecycleUnits;
 WORD fwOutputPosition;
 WORD fwInputPosition;
} WFSCIMCASHINSTART, *LPWFSCIMCASHINSTART;

typedef struct _wfs_cim_retract
{
 WORD fwOutputPosition;
 USHORT usRetractArea;
 USHORT usIndex;
} WFSCIMRETRACT, *LPWFSCIMRETRACT;

typedef struct _wfs_cim_teller_update
{
 USHORT usAction;
 LPWFSCIMTELLERDETAILS lpTellerDetails;
} WFSCIMTELLERUPDATE, *LPWFSCIMTELLERUPDATE;

typedef struct _wfs_cim_output
{
 USHORT usLogicalNumber;
 WORD fwPosition;
 USHORT usNumber;
} WFSCIMOUTPUT, *LPWFSCIMOUTPUT;

typedef struct _wfs_cim_start_ex
{
 WORD fwExchangeType;
 USHORT usTellerID;
 USHORT usCount;
 LPUSHORT lpusCUNumList;
 LPWFSCIMOUTPUT lpOutput;
} WFSCIMSTARTEX, *LPWFSCIMSTARTEX;

typedef struct _wfs_cim_itemposition
{
 USHORT usNumber;
 LPWFSCIMRETRACT lpRetractArea;
 WORD fwOutputPosition;
} WFSCIMITEMPOSITION, *LPWFSCIMITEMPOSITION;

typedef struct _wfs_cim_cash_in_type
{
 USHORT usNumber;
 DWORD dwType;
 LPUSHORT lpusNoteIDs;
} WFSCIMCASHINTYPE, *LPWFSCIMCASHINTYPE;

typedef struct _wfs_cim_set_guidlight
{
 WORD wGuidLight;

CWA 16374-15:2011 (E)

154

 DWORD dwCommand;
} WFSCIMSETGUIDLIGHT, *LPWFSCIMSETGUIDLIGHT;

typedef struct _wfs_cim_configure_note_reader
{
 BOOL bLoadAlways;
} WFSCIMCONFIGURENOTEREADER, *LPWFSCIMCONFIGURENOTEREADER;

typedef struct _wfs_cim_configure_note_reader_out
{
 BOOL bRebootNecessary;
} WFSCIMCONFIGURENOTEREADEROUT, *LPWFSCIMCONFIGURENOTEREADEROUT;

typedef struct _wfs_cim_P6_compare_signature
{
 LPWFSCIMP6SIGNATURE *lppP6ReferenceSignatures;
 LPWFSCIMP6SIGNATURE *lppP6Signatures;
} WFSCIMP6COMPARESIGNATURE, *LPWFSCIMP6COMPARESIGNATURE;

typedef struct _wfs_cim_P6_signatures_index
{
 USHORT usIndex;
 USHORT usConfidenceLevel;
 ULONG ulLength;
 LPVOID lpComparisonData;
} WFSCIMP6SIGNATURESINDEX, *LPWFSCIMP6SIGNATURESINDEX;

typedef struct _wfs_cim_P6_compare_result
{
 USHORT usCount;
 LPWFSCIMP6SIGNATURESINDEX *lppP6SignaturesIndex;
} WFSCIMP6COMPARERESULT, *LPWFSCIMP6COMPARERESULT;

typedef struct _wfs_cim_power_save_control
{
 USHORT usMaxPowerSaveRecoveryTime;
} WFSCIMPOWERSAVECONTROL, *LPWFSCIMPOWERSAVECONTROL;

typedef struct _wfs_cim_replenish_target
{
 USHORT usNumberTarget;
 ULONG ulNumberOfItemsToMove;
 BOOL bRemoveAll;
} WFSCIMREPTARGET, *LPWFSCIMREPTARGET;

typedef struct _wfs_cim_replenish
{
 USHORT usNumberSource;
 LPWFSCIMREPTARGET *lppReplenishTargets;
} WFSCIMREP, *LPWFSCIMREP;

typedef struct _wfs_cim_replenish_target_result
{
 USHORT usNumberTarget;
 USHORT usNoteID;
 ULONG ulNumberOfItemsReceived;
} WFSCIMREPTARGETRES, *LPWFSCIMREPTARGETRES;

typedef struct _wfs_cim_replenish_result
{
 ULONG ulNumberOfItemsRemoved;
 ULONG ulNumberOfItemsRejected;
 LPWFSCIMREPTARGETRES *lppReplenishTargetResults;
} WFSCIMREPRES, *LPWFSCIMREPRES;

typedef struct _wfs_cim_amount_limit
{
 CHAR cCurrencyID[3];
 ULONG ulAmount;
} WFSCIMAMOUNTLIMIT, *LPWFSCIMAMOUNTLIMIT;

CWA 16374-15:2011 (E)

155

typedef struct _wfs_cim_cash_in_limit
{
 ULONG ulTotalItemsLimit;
 LPWFSCIMAMOUNTLIMIT lpAmountLimit;
} WFSCIMCASHINLIMIT, *LPWFSCIMCASHINLIMIT;

typedef struct _wfs_cim_count
{
 USHORT usCount;
 LPUSHORT lpusCUNumList;
} WFSCIMCOUNT, *LPWFSCIMCOUNT;

typedef struct _wfs_cim_unit_lock_control
{
 LPSTR lpPhysicalPositionName;
 WORD wUnitAction;
} WFSCIMUNITLOCKCONTROL, *LPWFSCIMUNITLOCKCONTROL;

typedef struct _wfs_cim_device_lock_control
{
 WORD wDeviceAction;
 WORD wCashUnitAction;
 LPWFSCIMUNITLOCKCONTROL *lppUnitLockControl;
} WFSCIMDEVICELOCKCONTROL, *LPWFSCIMDEVICELOCKCONTROL;

typedef struct _wfs_cim_setmode
{
 WORD wMixedMode;
} WFSCIMSETMODE, *LPWFSCIMSETMODE;

typedef struct _wfs_cim_present
{
 WORD fwPosition;
} WFSCIMPRESENT, *LPWFSCIMPRESENT;

/*===*/
/* CIM Message Structures */
/*===*/

typedef struct _wfs_cim_cu_error
{
 WORD wFailure;
 LPWFSCIMCASHIN lpCashUnit;
} WFSCIMCUERROR, *LPWFSCIMCUERROR;

typedef struct _wfs_cim_counts_changed
{
 USHORT usCount;
 LPUSHORT lpusCUNumList;
} WFSCIMCOUNTSCHANGED, *LPWFSCIMCOUNTSCHANGED;

typedef struct _wfs_cim_position_info
{
 WORD wPosition;
 WORD wAdditionalBunches;
 USHORT usBunchesRemaining;
} WFSCIMPOSITIONINFO, *LPWFSCIMPOSITIONINFO;

typedef struct _wfs_cim_device_position
{
 WORD wPosition;
} WFSCIMDEVICEPOSITION, *LPWFSCIMDEVICEPOSITION;

typedef struct _wfs_cim_power_save_change
{
 USHORT usPowerSaveRecoveryTime;
} WFSCIMPOWERSAVECHANGE, *LPWFSCIMPOWERSAVECHANGE;

typedef struct _wfs_cim_incomplete_replenish

CWA 16374-15:2011 (E)

156

{
 LPWFSCIMREPRES lpReplenish;
} WFSCIMINCOMPLETEREPLENISH, *LPWFSCIMINCOMPLETEREPLENISH;

/* restore alignment */
#pragma pack (pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSCIM__H */

